Efficiency analysis of path-finding algorithms in a 2D grid environment

Ch Nirmal Prabhath, M. Kavitha, Kanak Kalita
{"title":"Efficiency analysis of path-finding algorithms in a 2D grid environment","authors":"Ch Nirmal Prabhath, M. Kavitha, Kanak Kalita","doi":"10.32629/jai.v7i2.1284","DOIUrl":null,"url":null,"abstract":"This paper offers a focused overview of pathfinding algorithms, particularly emphasizing Greedy Best First Search (G-BFS) and Rapidly-Exploring Random Trees (RRT). Their performance is evaluated within a 2D grid setting tailored for Unmanned Aerial Vehicles (UAVs). Divided into two main sections, the study first expounds on the theoretical underpinnings of these algorithms, followed by empirical validation. A series of systematic experiments, involving varied 2D grid dimensions and traversal patterns, facilitates a comparative analysis between G-BFS and RRT. Importantly, the real-world implementation of these algorithms in UAV navigation underscores their practicality, illuminating their respective execution times and resource utilization. While G-BFS thrives in straightforward scenarios, RRT, especially RRT*, displays superior capability in navigating more intricate and expansive terrains, albeit with marginally extended execution durations attributed to its explorative nature.","PeriodicalId":307060,"journal":{"name":"Journal of Autonomous Intelligence","volume":"42 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i2.1284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper offers a focused overview of pathfinding algorithms, particularly emphasizing Greedy Best First Search (G-BFS) and Rapidly-Exploring Random Trees (RRT). Their performance is evaluated within a 2D grid setting tailored for Unmanned Aerial Vehicles (UAVs). Divided into two main sections, the study first expounds on the theoretical underpinnings of these algorithms, followed by empirical validation. A series of systematic experiments, involving varied 2D grid dimensions and traversal patterns, facilitates a comparative analysis between G-BFS and RRT. Importantly, the real-world implementation of these algorithms in UAV navigation underscores their practicality, illuminating their respective execution times and resource utilization. While G-BFS thrives in straightforward scenarios, RRT, especially RRT*, displays superior capability in navigating more intricate and expansive terrains, albeit with marginally extended execution durations attributed to its explorative nature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维网格环境中路径搜索算法的效率分析
本文重点概述了寻路算法,特别强调了贪婪最佳初选搜索(G-BFS)和快速探索随机树(RRT)。在为无人飞行器(UAV)量身定制的二维网格环境中,对它们的性能进行了评估。研究分为两个主要部分,首先阐述了这些算法的理论基础,然后进行了经验验证。一系列系统实验涉及不同的二维网格尺寸和遍历模式,有助于对 G-BFS 和 RRT 进行比较分析。重要的是,这些算法在无人机导航中的实际应用强调了它们的实用性,阐明了各自的执行时间和资源利用率。G-BFS 在简单的场景中表现出色,而 RRT,尤其是 RRT*,在导航更加复杂和广阔的地形时表现出更强的能力,尽管由于其探索性而略微延长了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deciphering Themes and Trajectories: A Bibliometric Study on Learning Design & Technology over Four Decades Virtual Reality and Augmented Reality-Based Digital Pattern Design in the Context of the Blockchain Technology Framework Securing large-scale data processing: Integrating lightweight cryptography in MapReduce Design analysis of intelligent controller to minimize harmonic distortion and power loss of wind energy conversion system (grid connected) Securing large-scale data processing: Integrating lightweight cryptography in MapReduce
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1