Limitations of XAI methods for process-level understanding in the atmospheric sciences

Sam J. Silva, Christoph A. Keller
{"title":"Limitations of XAI methods for process-level understanding in the atmospheric sciences","authors":"Sam J. Silva, Christoph A. Keller","doi":"10.1175/aies-d-23-0045.1","DOIUrl":null,"url":null,"abstract":"\nExplainable Artificial Intelligence (XAI) methods are becoming popular tools for scientific discovery in the Earth and atmospheric sciences. While these techniques have the potential to revolutionize the scientific process, there are known limitations in their applicability that are frequently ignored. These limitations include that XAI methods explain the behavior of the A.I. model, not the behavior of the training dataset, and that caution should be used when these methods are applied to datasets with correlated and dependent features. Here, we explore the potential cost associated with ignoring these limitations with a simple case-study from the atmospheric chemistry literature – learning the reaction rate of a bimolecular reaction. We demonstrate that dependent and highly correlated input features can lead to spurious process-level explanations. We posit that the current generation of XAI techniques should largely only be used for understanding system-level behavior and recommend caution when using XAI methods for process-level scientific discovery in the Earth and atmospheric sciences.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0045.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable Artificial Intelligence (XAI) methods are becoming popular tools for scientific discovery in the Earth and atmospheric sciences. While these techniques have the potential to revolutionize the scientific process, there are known limitations in their applicability that are frequently ignored. These limitations include that XAI methods explain the behavior of the A.I. model, not the behavior of the training dataset, and that caution should be used when these methods are applied to datasets with correlated and dependent features. Here, we explore the potential cost associated with ignoring these limitations with a simple case-study from the atmospheric chemistry literature – learning the reaction rate of a bimolecular reaction. We demonstrate that dependent and highly correlated input features can lead to spurious process-level explanations. We posit that the current generation of XAI techniques should largely only be used for understanding system-level behavior and recommend caution when using XAI methods for process-level scientific discovery in the Earth and atmospheric sciences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XAI 方法在大气科学过程级理解方面的局限性
可解释人工智能(XAI)方法正成为地球和大气科学领域科学发现的流行工具。虽然这些技术有可能彻底改变科学进程,但其适用性存在一些已知的局限性,而这些局限性经常被忽视。这些局限性包括:XAI 方法解释的是人工智能模型的行为,而不是训练数据集的行为;在将这些方法应用于具有相关和依赖特征的数据集时,应谨慎行事。在这里,我们通过大气化学文献中的一个简单案例研究--学习双分子反应的反应速率--来探讨忽略这些局限性可能带来的代价。我们证明,依赖性和高度相关的输入特征会导致虚假的过程级解释。我们认为,目前的 XAI 技术在很大程度上只能用于理解系统级行为,并建议在地球和大气科学中使用 XAI 方法进行过程级科学发现时要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1