William Satterthwaite, Emily Chen, Tracy McReynolds, Audrey Dean, Shanae Allen, Michael O'Farrell
{"title":"Comparing Fishery Impacts and Maturation Schedules of Hatchery-Origin vs. Natural-Origin Fish from a Threatened Chinook Salmon Stock","authors":"William Satterthwaite, Emily Chen, Tracy McReynolds, Audrey Dean, Shanae Allen, Michael O'Farrell","doi":"10.15447/sfews.2023v21iss4art3","DOIUrl":null,"url":null,"abstract":"Central Valley Spring-run Chinook (CVSC) are listed as threatened under the California and federal Endangered Species Acts, but how ocean fisheries affect CVSC is not routinely monitored or managed, largely because of data limitations. Most tag data for CVSC are from a hatchery program that may not sufficiently represent natural-origin fish in ocean and inland fishery recovery data. However, a discontinued tagging program for Butte Creek Wild Spring-run Chinook (BCWSC) provides for estimation of fishery impacts and maturation schedules for a limited set of years, which we compared with estimates for hatchery-origin fish for common years, while extending the hatchery-origin estimates over a wider time-frame. Additional scale-age data from BCWSC allow inferences about more recent maturation rates, conditional on harvest-rate estimates borrowed from other stocks. Overall, CVSC appear to experience low age-3 ocean fishery impact rates, but age-4 impact rates can be comparable to ocean harvest rates estimated for Sacramento River Fall Chinook. Tagging data from the years available indicate that ocean fisheries may reduce spawning run sizes (all ages combined) by 40% to 60% during periods of high fishing effort. Effects of ocean fishing on spawner abundance are weaker in years of reduced fishing or for cohorts displaying earlier maturation. It appears that maturation rates of hatchery-origin CVSC may have increased (i.e., earlier maturation) over the full time-period examined, and there may be indications of increasing maturation rates for BCWSC as well.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":"139 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2023v21iss4art3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Central Valley Spring-run Chinook (CVSC) are listed as threatened under the California and federal Endangered Species Acts, but how ocean fisheries affect CVSC is not routinely monitored or managed, largely because of data limitations. Most tag data for CVSC are from a hatchery program that may not sufficiently represent natural-origin fish in ocean and inland fishery recovery data. However, a discontinued tagging program for Butte Creek Wild Spring-run Chinook (BCWSC) provides for estimation of fishery impacts and maturation schedules for a limited set of years, which we compared with estimates for hatchery-origin fish for common years, while extending the hatchery-origin estimates over a wider time-frame. Additional scale-age data from BCWSC allow inferences about more recent maturation rates, conditional on harvest-rate estimates borrowed from other stocks. Overall, CVSC appear to experience low age-3 ocean fishery impact rates, but age-4 impact rates can be comparable to ocean harvest rates estimated for Sacramento River Fall Chinook. Tagging data from the years available indicate that ocean fisheries may reduce spawning run sizes (all ages combined) by 40% to 60% during periods of high fishing effort. Effects of ocean fishing on spawner abundance are weaker in years of reduced fishing or for cohorts displaying earlier maturation. It appears that maturation rates of hatchery-origin CVSC may have increased (i.e., earlier maturation) over the full time-period examined, and there may be indications of increasing maturation rates for BCWSC as well.