{"title":"Door Opening and Closing Considering Forces Using a Mobile Manipulator with an Admittance Controlled Arm","authors":"Yasuhiko Fukumoto, Morio Jinnai, Shinnosuke Bando, Makoto Takenaka, Hiroaki Kobayashi","doi":"10.20965/jrm.2023.p1573","DOIUrl":null,"url":null,"abstract":"This study achieved four door operations, namely push-opening, push-closing, pull-opening, and pull-closing movements, using a mobile manipulator consisting of a commercially available arm robot and a mobile robot. We assumed that the arm robot is controlled by position commands at intervals of a few milliseconds, and that the mobile robot is guided by a simple straightforward linear trajectory. Ott, Borst, Bäuml, and Hirzinger proposed a push-opening method using impedance control in a cylindrical coordinate system for the arm robot. With this control, when the mobile robot advances toward and through the door, the arm robot moves passively and properly pushes the door open. However, their method is unsuitable for the above type of robot. Thus, we propose a method with two modifications: the use of admittance control and the improvement of force relaxation by considering a force obtained through a novel force decomposition. Furthermore, the proposed method was demonstrated not only in the push-opening movement but also in the push-closing, pull-opening, and pull-closing movements.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"42 15","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study achieved four door operations, namely push-opening, push-closing, pull-opening, and pull-closing movements, using a mobile manipulator consisting of a commercially available arm robot and a mobile robot. We assumed that the arm robot is controlled by position commands at intervals of a few milliseconds, and that the mobile robot is guided by a simple straightforward linear trajectory. Ott, Borst, Bäuml, and Hirzinger proposed a push-opening method using impedance control in a cylindrical coordinate system for the arm robot. With this control, when the mobile robot advances toward and through the door, the arm robot moves passively and properly pushes the door open. However, their method is unsuitable for the above type of robot. Thus, we propose a method with two modifications: the use of admittance control and the improvement of force relaxation by considering a force obtained through a novel force decomposition. Furthermore, the proposed method was demonstrated not only in the push-opening movement but also in the push-closing, pull-opening, and pull-closing movements.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.