{"title":"Door Opening and Closing Considering Forces Using a Mobile Manipulator with an Admittance Controlled Arm","authors":"Yasuhiko Fukumoto, Morio Jinnai, Shinnosuke Bando, Makoto Takenaka, Hiroaki Kobayashi","doi":"10.20965/jrm.2023.p1573","DOIUrl":null,"url":null,"abstract":"This study achieved four door operations, namely push-opening, push-closing, pull-opening, and pull-closing movements, using a mobile manipulator consisting of a commercially available arm robot and a mobile robot. We assumed that the arm robot is controlled by position commands at intervals of a few milliseconds, and that the mobile robot is guided by a simple straightforward linear trajectory. Ott, Borst, Bäuml, and Hirzinger proposed a push-opening method using impedance control in a cylindrical coordinate system for the arm robot. With this control, when the mobile robot advances toward and through the door, the arm robot moves passively and properly pushes the door open. However, their method is unsuitable for the above type of robot. Thus, we propose a method with two modifications: the use of admittance control and the improvement of force relaxation by considering a force obtained through a novel force decomposition. Furthermore, the proposed method was demonstrated not only in the push-opening movement but also in the push-closing, pull-opening, and pull-closing movements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study achieved four door operations, namely push-opening, push-closing, pull-opening, and pull-closing movements, using a mobile manipulator consisting of a commercially available arm robot and a mobile robot. We assumed that the arm robot is controlled by position commands at intervals of a few milliseconds, and that the mobile robot is guided by a simple straightforward linear trajectory. Ott, Borst, Bäuml, and Hirzinger proposed a push-opening method using impedance control in a cylindrical coordinate system for the arm robot. With this control, when the mobile robot advances toward and through the door, the arm robot moves passively and properly pushes the door open. However, their method is unsuitable for the above type of robot. Thus, we propose a method with two modifications: the use of admittance control and the improvement of force relaxation by considering a force obtained through a novel force decomposition. Furthermore, the proposed method was demonstrated not only in the push-opening movement but also in the push-closing, pull-opening, and pull-closing movements.