Challenges and limitations of synthetic minority oversampling techniques in machine learning

I. Alkhawaldeh, Ibrahem Albalkhi, Abdulqadir J Naswhan
{"title":"Challenges and limitations of synthetic minority oversampling techniques in machine learning","authors":"I. Alkhawaldeh, Ibrahem Albalkhi, Abdulqadir J Naswhan","doi":"10.5662/wjm.v13.i5.373","DOIUrl":null,"url":null,"abstract":"Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.","PeriodicalId":94271,"journal":{"name":"World journal of methodology","volume":"35 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of methodology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5662/wjm.v13.i5.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习中合成少数群体超采样技术的挑战和局限性
过度取样是处理阶级不平衡数据集的最常用方法,这一点从过去二十年中开发的大量过度取样方法中可见一斑。在下面的社论中,我们将论证超采样的问题,这些问题源于过度拟合的可能性以及生成的合成案例可能无法准确代表少数群体。在使用超采样技术时应考虑到这些局限性。我们还提出了几种处理不平衡数据的替代策略以及未来工作展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anticoagulant use before COVID-19 diagnosis prevent COVID-19 associated acute venous thromboembolism or not: A systematic review and meta-analysis. Botulinum toxin type A for treating chronic low back pain: A double blinded randomized control study. Cluster sampling methodology to evaluate immunization coverage. COVID-19 mutations: An overview. Early versus delayed necrosectomy in pancreatic necrosis: A population-based cohort study on readmission, healthcare utilization, and in-hospital mortality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1