{"title":"Sustainability impacts of sediments on the estuary, ports, and fishing communities of Cartagena Bay, Colombian Caribbean","authors":"M. Tosic, Juan D. Restrepo Ángel","doi":"10.1002/wat2.1709","DOIUrl":null,"url":null,"abstract":"This article reviews research on sediment flux impacts on the receiving estuary, ports, and society in Cartagena, Colombia. The city hosts both the country's largest touristic and coastal industrial sectors and is home to vulnerable coastal communities whose health and livelihoods are impacted by pollution. These marginalized artisanal fishing communities lack basic water and health services but have finally been recognized in a new intersectoral committee for Cartagena Bay's environmental management. To support the governance of these complex socioenvironmental challenges, the Cartagena Bay Observatory has been developed as a scientific tool to monitor the bay's conditions and forecast the effects of future sediment remediation plans. Cartagena Bay receives large freshwater discharges from the Dique Canal, draining from the 260,000 km2 Magdalena River watershed where 80% of the national population resides. This runoff transports sediment loads of 2.3 Mt/year, dispersing large plumes that affect the marine ecosystems and tourism and make the bay one of the Caribbean's largest sediment‐receiving estuaries. Following decades of watershed deforestation and erosion, the upward trending sediment inputs and accretion of the Dique delta have resulted in deposition rates of 1.8 cm/year, and the need for frequent dredging. Mercury dumped by a chemical industry in the 1970s can be found in concentrations as high as 18.8 μg/g buried below the bay's bottom. Mercury has also been found in the bay's biota and human populations, and so the dredging needed for the port's sustainability thereby presents a health risk by allowing this trapped mercury to surface.This article is categorized under:\nScience of Water > Hydrological Processes\nScience of Water > Water Quality\nScience of Water > Water and Environmental Change\n","PeriodicalId":501223,"journal":{"name":"WIREs Water","volume":"112 38","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wat2.1709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews research on sediment flux impacts on the receiving estuary, ports, and society in Cartagena, Colombia. The city hosts both the country's largest touristic and coastal industrial sectors and is home to vulnerable coastal communities whose health and livelihoods are impacted by pollution. These marginalized artisanal fishing communities lack basic water and health services but have finally been recognized in a new intersectoral committee for Cartagena Bay's environmental management. To support the governance of these complex socioenvironmental challenges, the Cartagena Bay Observatory has been developed as a scientific tool to monitor the bay's conditions and forecast the effects of future sediment remediation plans. Cartagena Bay receives large freshwater discharges from the Dique Canal, draining from the 260,000 km2 Magdalena River watershed where 80% of the national population resides. This runoff transports sediment loads of 2.3 Mt/year, dispersing large plumes that affect the marine ecosystems and tourism and make the bay one of the Caribbean's largest sediment‐receiving estuaries. Following decades of watershed deforestation and erosion, the upward trending sediment inputs and accretion of the Dique delta have resulted in deposition rates of 1.8 cm/year, and the need for frequent dredging. Mercury dumped by a chemical industry in the 1970s can be found in concentrations as high as 18.8 μg/g buried below the bay's bottom. Mercury has also been found in the bay's biota and human populations, and so the dredging needed for the port's sustainability thereby presents a health risk by allowing this trapped mercury to surface.This article is categorized under:
Science of Water > Hydrological Processes
Science of Water > Water Quality
Science of Water > Water and Environmental Change