Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang, Xi Liang
{"title":"Mechanical Performance of a Node-Reinforced Body-Centered Cubic Lattice Structure: An Equal-Strength Concept Design","authors":"Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang, Xi Liang","doi":"10.3390/aerospace11010004","DOIUrl":null,"url":null,"abstract":"Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures. In this paper, a new equal-strength body-centered cubic (ES-BCC) lattice structure was additively manufactured using 316L stainless steel via selective laser melting (SLM). The results of a mechanical compression test and finite element analysis revealed that the failure location of the ES-BCC structure changed from the nodes to the center of the struts. At the same density, the energy absorption, elastic modulus, and yield strength of the ES-BCC structure increased by 11.89%, 61.80%, and 53.72% compared to the BCC structure, respectively. Furthermore, the change in angle of the ES-BCC structure achieves significant changes in strength, stiffness, and energy absorption to meet different design requirements and engineering applications. The equal-strength concept design can be applied as a general design method to the design of other lightweight energy-absorbing lattice structures.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"119 47","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures. In this paper, a new equal-strength body-centered cubic (ES-BCC) lattice structure was additively manufactured using 316L stainless steel via selective laser melting (SLM). The results of a mechanical compression test and finite element analysis revealed that the failure location of the ES-BCC structure changed from the nodes to the center of the struts. At the same density, the energy absorption, elastic modulus, and yield strength of the ES-BCC structure increased by 11.89%, 61.80%, and 53.72% compared to the BCC structure, respectively. Furthermore, the change in angle of the ES-BCC structure achieves significant changes in strength, stiffness, and energy absorption to meet different design requirements and engineering applications. The equal-strength concept design can be applied as a general design method to the design of other lightweight energy-absorbing lattice structures.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.