Anna V. Tsyganova, Artem O. Petrov, A. Shastin, Natalia V. Filatova, V. Mumyatova, Alexander E. Tarasov, Alina V. Lolaeva, Georgii V. Malkov
{"title":"Synthesis, Antibacterial Activity, and Cytotoxicity of Azido-Propargyloxy 1,3,5-Triazine Derivatives and Hyperbranched Polymers","authors":"Anna V. Tsyganova, Artem O. Petrov, A. Shastin, Natalia V. Filatova, V. Mumyatova, Alexander E. Tarasov, Alina V. Lolaeva, Georgii V. Malkov","doi":"10.3390/chemistry6010001","DOIUrl":null,"url":null,"abstract":"A new method for the synthesis of azido-propargyloxy derivatives of 1,3,5-triazine has been developed utilizing the nitrosation of hydrazyno-1,3,5-triazines. New hydrazines (2-hydrazino-4,6-bis(propargyloxy)-1,3,5-triazine and 2,4-dihydrazino-6-propargyloxy-1,3,5-triazine) were synthesized and characterized via FTIR, NMR spectroscopy and elemental analysis. The hyperbranched polymers with azide (diazide monomer) and propargyloxy terminal groups were obtained via the azide-alkyne polycycloaddition reaction of diazide and monoazide AB2-type monomers. The antibacterial activity against Escherichia coli bacteria of 2,4,6-trispropargyloxy-1,3,5-triazine, 2-azido-4,6-bispropargyloxy-1,3,5-triazine, and 2,4-diazido-6-propargyloxy-1,3,5-triazine and their hyperbranched polymers was studied. Only 2,4-diazido-6-propargyloxy-1,3,5-triazine has weak antibacterial activity in comparison with ampicillin. The cytotoxicity of these compounds against M-HeLa, FetMSC, and Vero cell lines was also studied. 2,4,6-trispropargyloxy-1,3,5-triazine does not show any cytotoxic effect (IC50 ≥ 280 µM). It was shown that the presence of an azide group in the compound directly affects the cytotoxic effect. Hyperbranched polymers have a less cytotoxic effect against M-HeLa (IC50 > 100) in comparison with monomers (IC50 = 90–99 µM). This makes it possible to use these polymers as the basis for biocompatible materials in biomedical applications.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/chemistry6010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
A new method for the synthesis of azido-propargyloxy derivatives of 1,3,5-triazine has been developed utilizing the nitrosation of hydrazyno-1,3,5-triazines. New hydrazines (2-hydrazino-4,6-bis(propargyloxy)-1,3,5-triazine and 2,4-dihydrazino-6-propargyloxy-1,3,5-triazine) were synthesized and characterized via FTIR, NMR spectroscopy and elemental analysis. The hyperbranched polymers with azide (diazide monomer) and propargyloxy terminal groups were obtained via the azide-alkyne polycycloaddition reaction of diazide and monoazide AB2-type monomers. The antibacterial activity against Escherichia coli bacteria of 2,4,6-trispropargyloxy-1,3,5-triazine, 2-azido-4,6-bispropargyloxy-1,3,5-triazine, and 2,4-diazido-6-propargyloxy-1,3,5-triazine and their hyperbranched polymers was studied. Only 2,4-diazido-6-propargyloxy-1,3,5-triazine has weak antibacterial activity in comparison with ampicillin. The cytotoxicity of these compounds against M-HeLa, FetMSC, and Vero cell lines was also studied. 2,4,6-trispropargyloxy-1,3,5-triazine does not show any cytotoxic effect (IC50 ≥ 280 µM). It was shown that the presence of an azide group in the compound directly affects the cytotoxic effect. Hyperbranched polymers have a less cytotoxic effect against M-HeLa (IC50 > 100) in comparison with monomers (IC50 = 90–99 µM). This makes it possible to use these polymers as the basis for biocompatible materials in biomedical applications.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.