{"title":"Nanomaterials for CO2 Capture from Gas Streams","authors":"Francisco José Alguacil","doi":"10.3390/separations11010001","DOIUrl":null,"url":null,"abstract":"Since CO2 is an important component of gas emissions, its removal from gas streams is of the utmost importance to fulfill various environmental requirements. The technologies used to accomplish this removal are based mainly on absorption, as well as adsorption and membrane processing. Among the materials used in the above separation processes, materials in nano forms offer a potential alternative to other commonly used macromaterials. The present work reviews the most recent publications (2023) about CO2 capture using different nanomaterials, and whilst most of these publications were dedicated to investigating the above, several presented data on the separation of CO2 from other gases, namely nitrogen and methane. Furthermore, a number of publications investigated the recyclability of nanomaterials under continuous use, and just three of the references were about computational modeling; all others were experimental papers, and only one reference used a real industrial gas.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"10 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11010001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since CO2 is an important component of gas emissions, its removal from gas streams is of the utmost importance to fulfill various environmental requirements. The technologies used to accomplish this removal are based mainly on absorption, as well as adsorption and membrane processing. Among the materials used in the above separation processes, materials in nano forms offer a potential alternative to other commonly used macromaterials. The present work reviews the most recent publications (2023) about CO2 capture using different nanomaterials, and whilst most of these publications were dedicated to investigating the above, several presented data on the separation of CO2 from other gases, namely nitrogen and methane. Furthermore, a number of publications investigated the recyclability of nanomaterials under continuous use, and just three of the references were about computational modeling; all others were experimental papers, and only one reference used a real industrial gas.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization