{"title":"Generation of Narrow Modes in Random Raman Fiber Laser Based on Multimode Fiber","authors":"I. Vatnik, Oleg A. Gorbunov, Dmitry V. Churkin","doi":"10.3390/photonics11010002","DOIUrl":null,"url":null,"abstract":"We present a new design of a random Raman fiber laser based on a graded-index multimode fiber as the media composing the cavity that allows the generation of narrow spectral lines. We carried out spectral measurements using an optical heterodyning technique by projecting multimode radiation onto the fundamental mode of a standard single-mode fiber. The measurements confirmed the presence of localized ultra-narrow short-lived modes. We measured the powers of the modes and found it to be significantly higher (up to 25 mW) compared with those in a random Raman laser based on a single-mode fiber (<2 mW), while preserving the same typical lifetimes of a few milliseconds.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 19","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new design of a random Raman fiber laser based on a graded-index multimode fiber as the media composing the cavity that allows the generation of narrow spectral lines. We carried out spectral measurements using an optical heterodyning technique by projecting multimode radiation onto the fundamental mode of a standard single-mode fiber. The measurements confirmed the presence of localized ultra-narrow short-lived modes. We measured the powers of the modes and found it to be significantly higher (up to 25 mW) compared with those in a random Raman laser based on a single-mode fiber (<2 mW), while preserving the same typical lifetimes of a few milliseconds.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.