{"title":"Efficient and Reliable Prediction of Dump Slope Stability in Mines using Machine Learning: An in-depth Feature Importance Analysis","authors":"Sudhir KuMAr Singh, ChAKrA vArty","doi":"10.24425/ams.2023.148157","DOIUrl":null,"url":null,"abstract":"this study rigorously examines the pressing issue of dump slope stability in indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as random Forest (rF), k-nearest neighbors (Knn), Support vector Machine (SvM), Logistic regression (Lr), decision tree (dt), and gaussian naive bayes (gnb), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with rF (0.98), SvM (0.98), and dt (0.97). to address the class imbalance issue, the Synthetic Minority Oversampling technique (SMOtE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. these findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in india but potentially globally.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2023.148157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
this study rigorously examines the pressing issue of dump slope stability in indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as random Forest (rF), k-nearest neighbors (Knn), Support vector Machine (SvM), Logistic regression (Lr), decision tree (dt), and gaussian naive bayes (gnb), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with rF (0.98), SvM (0.98), and dt (0.97). to address the class imbalance issue, the Synthetic Minority Oversampling technique (SMOtE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. these findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in india but potentially globally.
期刊介绍:
Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in:
mining technologies,
mineral processing,
stability of mine workings,
mining machine science,
ventilation systems,
rock mechanics,
termodynamics,
underground storage of oil and gas,
mining and engineering geology,
geotechnical engineering,
tunnelling,
design and construction of tunnels,
design and construction on mining areas,
mining geodesy,
environmental protection in mining,
revitalisation of postindustrial areas.
Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.