{"title":"Precipitation Projection in Cambodia Using Statistically Downscaled CMIP6 Models","authors":"Seyhakreaksmey Duong, Layheang Song, R. Chhin","doi":"10.3390/cli11120245","DOIUrl":null,"url":null,"abstract":"The consequences of climate change are arising in the form of many types of natural disasters, such as flooding, drought, and tropical cyclones. Responding to climate change is a long horizontal run action that requires adaptation and mitigation strategies. Hence, future climate information is essential for developing effective strategies. This study explored the applicability of a statistical downscaling method, Bias-Corrected Spatial Disaggregation (BCSD), in downscaling climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and then applied the downscaled data to project the future condition of precipitation pattern and extreme events in Cambodia. We calculated four climate change indicators, namely mean precipitation changes, consecutive dry days (CDD), consecutive wet days (CWD), and maximum one-day precipitation (rx1day) under two shared socioeconomic pathways (SSPs) scenarios, which are SSP245 and SSP585. The results indicated the satisfactory performance of the BCSD method in capturing the spatial feature of orographic precipitation in Cambodia. The analysis of downscaled CMIP6 models shows that the mean precipitation in Cambodia increases during the wet season and slightly decreases in the dry season, and thus, there is a slight increase in annual rainfall. The projection of extreme climate indices shows that the CDD would likely increase under both climate change scenarios, indicating the potential threat of dry spells or drought events in Cambodia. In addition, CWD would likely increase under the SSP245 scenario and strongly decrease in the eastern part of the country under the SSP585 scenario, which inferred that the wet spell would have happened under the moderate scenario of climate change, but it would be the opposite under the SSP585 scenario. Moreover, rx1day would likely increase over most parts of Cambodia, especially under the SSP585 scenario at the end of the century. This can be inferred as a potential threat to extreme rainfall triggering flood events in the country due to climate change.","PeriodicalId":37615,"journal":{"name":"Climate","volume":"130 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11120245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The consequences of climate change are arising in the form of many types of natural disasters, such as flooding, drought, and tropical cyclones. Responding to climate change is a long horizontal run action that requires adaptation and mitigation strategies. Hence, future climate information is essential for developing effective strategies. This study explored the applicability of a statistical downscaling method, Bias-Corrected Spatial Disaggregation (BCSD), in downscaling climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and then applied the downscaled data to project the future condition of precipitation pattern and extreme events in Cambodia. We calculated four climate change indicators, namely mean precipitation changes, consecutive dry days (CDD), consecutive wet days (CWD), and maximum one-day precipitation (rx1day) under two shared socioeconomic pathways (SSPs) scenarios, which are SSP245 and SSP585. The results indicated the satisfactory performance of the BCSD method in capturing the spatial feature of orographic precipitation in Cambodia. The analysis of downscaled CMIP6 models shows that the mean precipitation in Cambodia increases during the wet season and slightly decreases in the dry season, and thus, there is a slight increase in annual rainfall. The projection of extreme climate indices shows that the CDD would likely increase under both climate change scenarios, indicating the potential threat of dry spells or drought events in Cambodia. In addition, CWD would likely increase under the SSP245 scenario and strongly decrease in the eastern part of the country under the SSP585 scenario, which inferred that the wet spell would have happened under the moderate scenario of climate change, but it would be the opposite under the SSP585 scenario. Moreover, rx1day would likely increase over most parts of Cambodia, especially under the SSP585 scenario at the end of the century. This can be inferred as a potential threat to extreme rainfall triggering flood events in the country due to climate change.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.