{"title":"Fracture morphology of desiccation cracks in clayey soil","authors":"Zhao-Lin Cai, C. Tang, Q. Cheng, Bin Shi","doi":"10.1139/cgj-2023-0099","DOIUrl":null,"url":null,"abstract":"Desiccation cracks compromise soil integrity and weaken its strength, causing a range of detrimental consequences across various domains. Elucidating the cracking mechanism can aid in managing crack propagation and mitigating the associated risks. This study monitored and compared the evolution of crack patterns on the soil surface and fracture morphologies on the soil cross-section during the drying process using a tested soil sample. Multiple fracture morphological features are discerned on the soil cross-section, encompassing initiation points and plumose structures. Soil fracture morphologies are categorized into three cases based on the initiation point's location, referred to as \"Top-initiated structure\", \"Bottom-initiated structure\" and \"Truncated structure\". Experimental results demonstrate that plumose structures result from the division of the crack front under mixed-mode loading. Cracking under mixed-mode I+II loading leads to cross-section tilting, resulting in curved surface cracks. Conversely, cracking under mixed-mode I+III loading causes cross-section twisting, generating hackle lines and step structures. Furthermore, the crack front radiates from the initiation point, creating orthogonal hackle lines. The geometric relationship confirms that the soil fracture morphology is a good indicator of the cracking process, both in laboratory tests and field observations.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"31 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0099","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Desiccation cracks compromise soil integrity and weaken its strength, causing a range of detrimental consequences across various domains. Elucidating the cracking mechanism can aid in managing crack propagation and mitigating the associated risks. This study monitored and compared the evolution of crack patterns on the soil surface and fracture morphologies on the soil cross-section during the drying process using a tested soil sample. Multiple fracture morphological features are discerned on the soil cross-section, encompassing initiation points and plumose structures. Soil fracture morphologies are categorized into three cases based on the initiation point's location, referred to as "Top-initiated structure", "Bottom-initiated structure" and "Truncated structure". Experimental results demonstrate that plumose structures result from the division of the crack front under mixed-mode loading. Cracking under mixed-mode I+II loading leads to cross-section tilting, resulting in curved surface cracks. Conversely, cracking under mixed-mode I+III loading causes cross-section twisting, generating hackle lines and step structures. Furthermore, the crack front radiates from the initiation point, creating orthogonal hackle lines. The geometric relationship confirms that the soil fracture morphology is a good indicator of the cracking process, both in laboratory tests and field observations.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.