A combination of the particle swarm optimization-artificial neurons network algorithm and response surface method to optimize energy consumption and cost during milling of the 2017A alloy

Kamel Bousnina, Anis Hamza, Noureddine Ben Yahia
{"title":"A combination of the particle swarm optimization-artificial neurons network algorithm and response surface method to optimize energy consumption and cost during milling of the 2017A alloy","authors":"Kamel Bousnina, Anis Hamza, Noureddine Ben Yahia","doi":"10.1177/01445987231217134","DOIUrl":null,"url":null,"abstract":"This research aims to predict the cost and energy consumption associated with pocket and groove machining using the hybrid particle swarm optimization-artificial neurons network (PSO-ANN) algorithm and the response surface method (RSM). A parametric study was conducted to determine the best predictions by adjusting the swarm population size (pop) and the number of neurons (n) in the hidden layer. The results showed that machining strategies and sequences can have a significant impact on energy consumption, reaching a difference of 99.25% between the minimum and maximum values. The cost ( Ctot) and energy consumption ( Etot) values with the PSO-ANN algorithm increased significantly by 99.99% and 92.41%, respectively, compared to the RSM model. The minimum mean square error values for Etot and Ctot with the PSO-ANN models are 3.0499 × 10−5 and 4.6296 × 10−10, respectively. This study highlights the potential of the hybrid PSO-ANN algorithm for multi-criteria prediction and highlights the potential for improved machining of 2017A alloy.","PeriodicalId":444405,"journal":{"name":"Energy Exploration & Exploitation","volume":"44 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231217134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to predict the cost and energy consumption associated with pocket and groove machining using the hybrid particle swarm optimization-artificial neurons network (PSO-ANN) algorithm and the response surface method (RSM). A parametric study was conducted to determine the best predictions by adjusting the swarm population size (pop) and the number of neurons (n) in the hidden layer. The results showed that machining strategies and sequences can have a significant impact on energy consumption, reaching a difference of 99.25% between the minimum and maximum values. The cost ( Ctot) and energy consumption ( Etot) values with the PSO-ANN algorithm increased significantly by 99.99% and 92.41%, respectively, compared to the RSM model. The minimum mean square error values for Etot and Ctot with the PSO-ANN models are 3.0499 × 10−5 and 4.6296 × 10−10, respectively. This study highlights the potential of the hybrid PSO-ANN algorithm for multi-criteria prediction and highlights the potential for improved machining of 2017A alloy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化-人工神经元网络算法与响应面法相结合,优化 2017A 合金铣削过程中的能耗和成本
本研究旨在利用粒子群优化-人工神经元网络(PSO-ANN)混合算法和响应面法(RSM)预测与凹槽加工相关的成本和能耗。通过调整粒子群数量(pop)和隐层神经元数量(n),进行了参数研究,以确定最佳预测结果。结果表明,加工策略和顺序对能耗有显著影响,最小值和最大值之间的差异达到 99.25%。与 RSM 模型相比,PSO-ANN 算法的成本(Ctot)和能耗(Etot)值分别显著增加了 99.99% 和 92.41%。采用 PSO-ANN 模型的 Etot 和 Ctot 的最小均方误差值分别为 3.0499 × 10-5 和 4.6296 × 10-10。这项研究凸显了 PSO-ANN 混合算法在多标准预测方面的潜力,并强调了改进 2017A 合金加工的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on cracking mechanism and key parameters of roof in gob-side entry retaining by pre-split blasting roof in deep mine Population, carbon dioxide emissions and renewable energy consumption nexus: New insights from Vietnam The effect of digitalization and green technology innovation on energy efficiency in the European Union A transfer learning-based hybrid model with LightGBM for smart grid short-term energy load prediction Thermal assessment of cylindrical parabolic integrated collector storage using input-output and dynamic system testing procedures: Experimental and numerical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1