Enhancing Vibration Control in Cable–Tip–Mass Systems Using Asymmetric Peak Detector Boundary Control

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-12-11 DOI:10.3390/act12120463
L. Acho, Gisela Pujol-Vázquez
{"title":"Enhancing Vibration Control in Cable–Tip–Mass Systems Using Asymmetric Peak Detector Boundary Control","authors":"L. Acho, Gisela Pujol-Vázquez","doi":"10.3390/act12120463","DOIUrl":null,"url":null,"abstract":"In this study, a boundary controller based on a peak detector system has been designed to reduce vibrations in the cable–tip–mass system. The control procedure is built upon a recent modification of the controller, incorporating a non-symmetric peak detector mechanism to enhance the robustness of the control design. The crucial element lies in the identification of peaks within the boundary input signal, which are then utilized to formulate the control law. Its mathematical representation relies on just two tunable parameters. Numerical experiments have been conducted to assess the performance of this novel approach, demonstrating superior efficacy compared to the boundary damper control, which has been included for comparative purposes.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"15 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120463","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a boundary controller based on a peak detector system has been designed to reduce vibrations in the cable–tip–mass system. The control procedure is built upon a recent modification of the controller, incorporating a non-symmetric peak detector mechanism to enhance the robustness of the control design. The crucial element lies in the identification of peaks within the boundary input signal, which are then utilized to formulate the control law. Its mathematical representation relies on just two tunable parameters. Numerical experiments have been conducted to assess the performance of this novel approach, demonstrating superior efficacy compared to the boundary damper control, which has been included for comparative purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非对称峰值检波器边界控制加强缆尖-质量系统的振动控制
在这项研究中,设计了一种基于峰值检测系统的边界控制器,以减少电缆尖端质量系统的振动。控制程序建立在最近对控制器进行的修改基础上,采用了非对称峰值检测机制,以增强控制设计的鲁棒性。关键因素在于识别边界输入信号中的峰值,然后利用这些峰值制定控制法则。其数学表示仅依赖于两个可调参数。为评估这种新方法的性能,我们进行了数值实验,结果表明,与边界阻尼器控制相比,这种方法具有更高的效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1