Separation and detection of orbital angular momentum states of composite vortex beams in atmospheric turbulence channels

IF 2 4区 物理与天体物理 Q3 OPTICS Journal of Optics Pub Date : 2023-12-11 DOI:10.1088/2040-8986/ad147c
Hongyan Wei, Han Zhou, Yuejiao Fu, Q. Du, Peng Jia, D. Cai
{"title":"Separation and detection of orbital angular momentum states of composite vortex beams in atmospheric turbulence channels","authors":"Hongyan Wei, Han Zhou, Yuejiao Fu, Q. Du, Peng Jia, D. Cai","doi":"10.1088/2040-8986/ad147c","DOIUrl":null,"url":null,"abstract":"\n The separation and detection of compound orbital angular momentum modes are the basis for achieving high-speed and high-capacity communication, but the atmospheric turbulence causes distortion of the phase fronts of vortex beams, which hinders the recognition of orbital angular momentum modes. To solve this problem, in this work, we propose and investigate a joint scheme of combining the Gerchberg-Saxton algorithm and the phase of addition and subtraction model that can achieve high recognition accuracy and a wide range of orbital angular momentum modes of compound perfect optical vortex beam under long-distance turbulence environment. At the receiving end, the Gerchberg-Saxton algorithm and phase addition and subtraction are used to compensate and modulate the incident vortex light field to obtain the pre-processed light field, and then the orbital angular momentum is detected by the coordinate transformation method. The simulation results show that: The detection range of the orbital angular momentum of the 3 optical path detection model for the vortex beam transmitting 1000m reaches -37~+37 in the vacuum environment, and the mode purity of -37~+37 can reach more than 0.3 when the turbulence intensity is Cn2=2×10-15m-2/3. The detection range of the orbital angular momentum of the vortex can be further expanded by increasing the optical path. This study provides a new method for the separation and detection of orbital angular momentum of composite vortex beams.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"22 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad147c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The separation and detection of compound orbital angular momentum modes are the basis for achieving high-speed and high-capacity communication, but the atmospheric turbulence causes distortion of the phase fronts of vortex beams, which hinders the recognition of orbital angular momentum modes. To solve this problem, in this work, we propose and investigate a joint scheme of combining the Gerchberg-Saxton algorithm and the phase of addition and subtraction model that can achieve high recognition accuracy and a wide range of orbital angular momentum modes of compound perfect optical vortex beam under long-distance turbulence environment. At the receiving end, the Gerchberg-Saxton algorithm and phase addition and subtraction are used to compensate and modulate the incident vortex light field to obtain the pre-processed light field, and then the orbital angular momentum is detected by the coordinate transformation method. The simulation results show that: The detection range of the orbital angular momentum of the 3 optical path detection model for the vortex beam transmitting 1000m reaches -37~+37 in the vacuum environment, and the mode purity of -37~+37 can reach more than 0.3 when the turbulence intensity is Cn2=2×10-15m-2/3. The detection range of the orbital angular momentum of the vortex can be further expanded by increasing the optical path. This study provides a new method for the separation and detection of orbital angular momentum of composite vortex beams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气湍流通道中复合涡束轨道角动量状态的分离与探测
复合轨道角动量模式的分离和检测是实现高速大容量通信的基础,但大气湍流会导致涡束相位前沿畸变,从而阻碍轨道角动量模式的识别。为解决这一问题,我们在本研究中提出并研究了一种将 Gerchberg-Saxton 算法与相位加减模型相结合的联合方案,该方案可在长距离湍流环境下实现对复合完美光学涡流束的高识别精度和大范围轨道角动量模式识别。在接收端,利用 Gerchberg-Saxton 算法和相位加减法对入射涡旋光场进行补偿和调制,得到预处理光场,然后利用坐标变换方法检测轨道角动量。模拟结果表明当湍流强度为 Cn2=2×10-15m-2/3 时,-37~+37 的模纯度可达 0.3 以上。通过增加光路,可以进一步扩大涡旋轨道角动量的探测范围。这项研究为复合涡束轨道角动量的分离和探测提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
4.80%
发文量
237
审稿时长
1.9 months
期刊介绍: Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as: Nanophotonics and plasmonics Metamaterials and structured photonic materials Quantum photonics Biophotonics Light-matter interactions Nonlinear and ultrafast optics Propagation, diffraction and scattering Optical communication Integrated optics Photovoltaics and energy harvesting We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.
期刊最新文献
Dynamic tailoring large-area surface plasmon polariton excitation Optical microscope with nanometer longitudinal resolution based on a Linnik interferometer Design and fabrication of polarization independent LCoS phase modulators with polymer waveplate and analog driving Intrinsic angular momentum, spin and helicity of higher-order Poincaré modes Multidimensional dynamic control of optical skyrmions in graphene–chiral–graphene multilayers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1