Dry and Minimum Quantity Lubrication Machining of Additively Manufactured IN718 Produced via Laser Metal Deposition

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-10 DOI:10.3390/lubricants11120523
Ozan Can Ozaner, A. Kapil, Yuji Sato, Yoshihiko Hayashi, Keiichiro Ikeda, Tetsuo Suga, Masahiro Tsukamoto, Ş. Karabulut, Musa Bilgin, Abhay Sharma
{"title":"Dry and Minimum Quantity Lubrication Machining of Additively Manufactured IN718 Produced via Laser Metal Deposition","authors":"Ozan Can Ozaner, A. Kapil, Yuji Sato, Yoshihiko Hayashi, Keiichiro Ikeda, Tetsuo Suga, Masahiro Tsukamoto, Ş. Karabulut, Musa Bilgin, Abhay Sharma","doi":"10.3390/lubricants11120523","DOIUrl":null,"url":null,"abstract":"Inconel 718 (IN718), a Ni-based superalloy, is immensely popular in the aerospace, nuclear, and chemical industries. In these industrial fields, IN718 parts fabricated using conventional and additive manufacturing routes require subsequent machining to meet the dimensional accuracy and surface quality requirements of practical applications. The machining of IN718 has been a prominent research topic for conventionally cast, wrought, and forged parts. However, very little attention has been given to the machinability of IN718 additively manufactured using laser metal deposition (LMD). This lack of research can lead to numerous issues derived from the assumption that the machining behavior corresponds to conventionally fabricated parts. To address this, our study comprehensively assesses the machinability of LMDed IN718 in dry and minimum quantity lubrication (MQL) cutting environments. Our main goal is to understand how LMD process variables and the cutting environment affect cutting forces, tool wear, surface quality, and energy consumption when working with LMDed IN718 walls. To achieve this, we deposited IN718 on SS309L substrates while varying the following LMD process parameters: laser power, powder feed rate, and scanning speed. The results unveil that machining the deposited wall closer to the substrate is significantly more difficult than away from the substrate, owing to the variance in hardness along the build direction. MQL greatly improves machining across all processing parameters regardless of the machining location along the build direction. Laser power is identified as the most influential parameter, along with the recommendation for a specific combination of power feed rate and scanning speed, providing practical guidelines for optimizing the machining process. While MQL positively impacts machinability, hourly energy consumption remains comparable to dry cutting. This work offers practical guidance for improving the machinability of LMDed IN718 walls and the successful adoption of LMD and the additive–subtractive machining chain. The outcomes of this work provide a significant and critical understanding of location-dependent machinability that can help develop targeted approaches to overcome machining difficulties associated with specific areas of the LMDed structure. The finding that MQL significantly improves machining across all processing parameters, particularly in the challenging bottom region, offers practical guidance for selecting optimal cutting conditions. The potential economic benefits of MQL in terms of tool longevity without a substantial increase in energy costs is also highlighted, which has implications for incorporating MQL in several advanced manufacturing processes.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"803 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inconel 718 (IN718), a Ni-based superalloy, is immensely popular in the aerospace, nuclear, and chemical industries. In these industrial fields, IN718 parts fabricated using conventional and additive manufacturing routes require subsequent machining to meet the dimensional accuracy and surface quality requirements of practical applications. The machining of IN718 has been a prominent research topic for conventionally cast, wrought, and forged parts. However, very little attention has been given to the machinability of IN718 additively manufactured using laser metal deposition (LMD). This lack of research can lead to numerous issues derived from the assumption that the machining behavior corresponds to conventionally fabricated parts. To address this, our study comprehensively assesses the machinability of LMDed IN718 in dry and minimum quantity lubrication (MQL) cutting environments. Our main goal is to understand how LMD process variables and the cutting environment affect cutting forces, tool wear, surface quality, and energy consumption when working with LMDed IN718 walls. To achieve this, we deposited IN718 on SS309L substrates while varying the following LMD process parameters: laser power, powder feed rate, and scanning speed. The results unveil that machining the deposited wall closer to the substrate is significantly more difficult than away from the substrate, owing to the variance in hardness along the build direction. MQL greatly improves machining across all processing parameters regardless of the machining location along the build direction. Laser power is identified as the most influential parameter, along with the recommendation for a specific combination of power feed rate and scanning speed, providing practical guidelines for optimizing the machining process. While MQL positively impacts machinability, hourly energy consumption remains comparable to dry cutting. This work offers practical guidance for improving the machinability of LMDed IN718 walls and the successful adoption of LMD and the additive–subtractive machining chain. The outcomes of this work provide a significant and critical understanding of location-dependent machinability that can help develop targeted approaches to overcome machining difficulties associated with specific areas of the LMDed structure. The finding that MQL significantly improves machining across all processing parameters, particularly in the challenging bottom region, offers practical guidance for selecting optimal cutting conditions. The potential economic benefits of MQL in terms of tool longevity without a substantial increase in energy costs is also highlighted, which has implications for incorporating MQL in several advanced manufacturing processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对通过激光金属沉积法生产的增材制造 IN718 进行干式和最小量润滑加工
Inconel 718(IN718)是一种镍基超级合金,在航空航天、核能和化学工业中大受欢迎。在这些工业领域,使用传统和快速成型制造工艺制造的 IN718 零件需要进行后续机加工,以满足实际应用中对尺寸精度和表面质量的要求。对于传统的铸造、锻造和锻造零件而言,IN718 的机加工一直是一个突出的研究课题。然而,人们很少关注使用激光金属沉积(LMD)快速制造的 IN718 的可加工性。这种研究的缺乏可能会导致许多问题,这些问题源于假定加工行为与传统制造的零件一致。为了解决这个问题,我们的研究全面评估了 LMD 加成型 IN718 在干燥和最小量润滑 (MQL) 切削环境下的可加工性。我们的主要目标是了解 LMD 工艺变量和切削环境如何影响切削力、刀具磨损、表面质量以及加工 LMDed IN718 壁时的能耗。为此,我们将 IN718 沉积在 SS309L 基材上,同时改变以下 LMD 工艺参数:激光功率、粉末进给速度和扫描速度。结果表明,由于沿构建方向的硬度差异,加工靠近基体的沉积壁要比远离基体的沉积壁困难得多。无论沿构建方向的加工位置如何,MQL 都能极大地改善所有加工参数的加工效果。激光功率被认为是影响最大的参数,同时还推荐了功率进给率和扫描速度的特定组合,为优化加工过程提供了实用指南。虽然 MQL 对加工性能有积极影响,但每小时的能耗仍与干切削相当。这项工作为提高 LMD 加工 IN718 壁的可加工性以及成功采用 LMD 和增材-减材加工链提供了实用指导。这项工作的成果提供了对位置相关加工性的重要而关键的理解,有助于开发有针对性的方法,克服与 LMD 加工结构特定区域相关的加工困难。MQL 可显著改善所有加工参数的加工性能,尤其是在具有挑战性的底部区域,这一发现为选择最佳切削条件提供了实用指导。此外,研究还强调了 MQL 在不大幅增加能源成本的情况下延长刀具寿命的潜在经济效益,这对将 MQL 纳入若干先进制造工艺具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1