{"title":"Preparation and Tribological Behavior of Nitrogen-Doped Willow Catkins/MoS2 Nanocomposites as Lubricant Additives in Liquid Paraffin","authors":"Yaping Xing, Ebo Liu, Bailin Ren, Lisha Liu, Zhiguo Liu, Bocheng Zhu, Xiaotian Wang, Zhengfeng Jia, Weifang Han, Yungang Bai","doi":"10.3390/lubricants11120524","DOIUrl":null,"url":null,"abstract":"In this study, willow catkins/MoS2 nanoparticles (denoted as WCMSs) have been prepared using a hydrothermal method. The WCMSs were modified with oleic acid (OA) to improve dispersion in base oil. The friction and wear properties of WCMSs in liquid paraffin (LP) for steel balls were investigated using a four-ball wear tester. The results have shown that at a high reaction temperature, willow catkins (being used as a template) and urea (being used as a nitrogen resource) can effectively decrease the wear scar diameters (WSDs) and coefficients of friction (COFs). At a concentration of 0.5 wt.%, the WSD and COF of steel balls, when lubricated using LP containing modified WCMS with urea, decreased from 0.65 mm and 0.175 of pure LP to 0.46 mm and 0.09, respectively. The addition of urea and hydroxylated catkins can generate a significant number of loose nano-sheets and even graphene-like sheets. The weak van der Waals forces, decreasing the shear forces that the steel balls must overcome, provide effective lubrication during rotation. On the other hand, the tribo-films containing MoS2, FeS, azide, metal oxides and other compounds play important roles in reducing friction and facilitating anti-wear properties.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"628 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, willow catkins/MoS2 nanoparticles (denoted as WCMSs) have been prepared using a hydrothermal method. The WCMSs were modified with oleic acid (OA) to improve dispersion in base oil. The friction and wear properties of WCMSs in liquid paraffin (LP) for steel balls were investigated using a four-ball wear tester. The results have shown that at a high reaction temperature, willow catkins (being used as a template) and urea (being used as a nitrogen resource) can effectively decrease the wear scar diameters (WSDs) and coefficients of friction (COFs). At a concentration of 0.5 wt.%, the WSD and COF of steel balls, when lubricated using LP containing modified WCMS with urea, decreased from 0.65 mm and 0.175 of pure LP to 0.46 mm and 0.09, respectively. The addition of urea and hydroxylated catkins can generate a significant number of loose nano-sheets and even graphene-like sheets. The weak van der Waals forces, decreasing the shear forces that the steel balls must overcome, provide effective lubrication during rotation. On the other hand, the tribo-films containing MoS2, FeS, azide, metal oxides and other compounds play important roles in reducing friction and facilitating anti-wear properties.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding