Shuang Zhao , Ruiying Feng , Yuan Gu , Liyuan Han , Xiaomei Cong , Yang Liu , Shuo Liu , Qiyao Shen , Liujie Huo , Fu Yan
{"title":"Heterologous expression facilitates the discovery and characterization of marine microbial natural products","authors":"Shuang Zhao , Ruiying Feng , Yuan Gu , Liyuan Han , Xiaomei Cong , Yang Liu , Shuo Liu , Qiyao Shen , Liujie Huo , Fu Yan","doi":"10.1016/j.engmic.2023.100137","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 2","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000693/pdfft?md5=327efcf30168d96356c4e7af90784416&pid=1-s2.0-S2667370323000693-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.
微生物天然产品及其衍生物已被开发为临床药物和农用化学品的重要组成部分。海洋微生物天然产物表现出多种化学结构和生物活性,具有开发新型药物的巨大潜力。然而,从海洋微生物中发现具有新骨架的化合物仍然具有挑战性。近几十年来,人们开发了多种方法来发现新型海洋微生物天然产物,其中异源表达被证明是一种有效的方法。在大 DNA 克隆和比较代谢组学技术的推动下,通过在异源宿主中表达海洋微生物的生物合成基因簇(BGCs),从海洋微生物中发现了一些新型生物活性天然产物。异源表达有利于鉴定基因功能和阐明天然产物的生物合成机制。本综述概述了在异源表达引导下发现、阐明生物合成机制以及优化海洋微生物天然产物产量方面的最新进展,并探讨了异源表达策略在促进新型天然产物开发方面的未来发展方向。