Time Complexity of Population-Based Metaheuristics

Mendel Pub Date : 2023-12-20 DOI:10.13164/mendel.2023.2.255
Mahamed G. H. Omran, Andries Engelbrecht
{"title":"Time Complexity of Population-Based Metaheuristics","authors":"Mahamed G. H. Omran, Andries Engelbrecht","doi":"10.13164/mendel.2023.2.255","DOIUrl":null,"url":null,"abstract":"This paper is a brief guide aimed at evaluating the time complexity of metaheuristic algorithms both mathematically and empirically. Starting with the mathematical foundational principles of time complexity analysis, key notations and fundamental concepts necessary for computing the time efficiency of a metaheuristic are introduced. The paper then applies these principles on three well-known metaheuristics, i.e. differential evolution, harmony search and the firefly algorithm. A procedure for the empirical analysis of metaheuristics' time efficiency is then presented. The procedure is then used to empirically analyze the computational cost of the three aforementioned metaheuristics. The pros and cons of the two approaches, i.e. mathematical and empirical analysis, are discussed.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.2.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a brief guide aimed at evaluating the time complexity of metaheuristic algorithms both mathematically and empirically. Starting with the mathematical foundational principles of time complexity analysis, key notations and fundamental concepts necessary for computing the time efficiency of a metaheuristic are introduced. The paper then applies these principles on three well-known metaheuristics, i.e. differential evolution, harmony search and the firefly algorithm. A procedure for the empirical analysis of metaheuristics' time efficiency is then presented. The procedure is then used to empirically analyze the computational cost of the three aforementioned metaheuristics. The pros and cons of the two approaches, i.e. mathematical and empirical analysis, are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于群体的元搜索的时间复杂性
本文是一份简明指南,旨在从数学和经验两方面评估元启发式算法的时间复杂性。本文从时间复杂性分析的数学基础原理入手,介绍了计算元启发式时间效率所需的关键符号和基本概念。然后,论文将这些原理应用于三种著名的元启发式算法,即微分进化、和谐搜索和萤火虫算法。然后介绍了对元启发式时间效率进行实证分析的程序。然后利用该程序对上述三种元启发式的计算成本进行实证分析。讨论了数学分析和经验分析两种方法的利弊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1