Davide Ambrosi, L. Deorsola, Stefano Turzi, Marta Zoppello
{"title":"The shape of the mitral annulus: A hypothesis of mechanical morphogenesis","authors":"Davide Ambrosi, L. Deorsola, Stefano Turzi, Marta Zoppello","doi":"10.1177/10812865231208016","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of mechanics in the morphogenesis of the annulus of the mitral valve. We represent the annulus in its embryonic stage as an elastic ring and we perform a mechanical simulation of the development process applying a distributed torque on the rod: because of the mechanical action of the other growing cardiac chambers on the atrio-ventricular region, it departs from a planar circular shape. The numerical integration of the mathematical rod model subject to a bending load yields a shape very near to the one reported in the medical literature as anatomical reference for healthy patients. To make the comparison quantitative, we illustrate a numerical approach to match two curves in 3D defining their distance in a proper mathematical way. Such a methodology is first applied to compare the annular shape resulting from the mechanical model with an anatomical reference “master” shape and it is then applied to set to clinical data extracted from MRI for a cohort of healthy patients. The good agreement among anatomical master description, numerical mechanical model, and clinical data supports our speculation about a possible role of mechanics in determining the shape of the mitral valve.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":" 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231208016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the role of mechanics in the morphogenesis of the annulus of the mitral valve. We represent the annulus in its embryonic stage as an elastic ring and we perform a mechanical simulation of the development process applying a distributed torque on the rod: because of the mechanical action of the other growing cardiac chambers on the atrio-ventricular region, it departs from a planar circular shape. The numerical integration of the mathematical rod model subject to a bending load yields a shape very near to the one reported in the medical literature as anatomical reference for healthy patients. To make the comparison quantitative, we illustrate a numerical approach to match two curves in 3D defining their distance in a proper mathematical way. Such a methodology is first applied to compare the annular shape resulting from the mechanical model with an anatomical reference “master” shape and it is then applied to set to clinical data extracted from MRI for a cohort of healthy patients. The good agreement among anatomical master description, numerical mechanical model, and clinical data supports our speculation about a possible role of mechanics in determining the shape of the mitral valve.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).