A Secure Anonymous Identity-Based Virtual-Space Agreement Method for Crowds-Based Anonymous Communicate Scheme

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2023-12-18 DOI:10.1049/2023/8234537
Kai Lin, Kaiyu Wang, Jin Shang, Qindong Sun
{"title":"A Secure Anonymous Identity-Based Virtual-Space Agreement Method for Crowds-Based Anonymous Communicate Scheme","authors":"Kai Lin, Kaiyu Wang, Jin Shang, Qindong Sun","doi":"10.1049/2023/8234537","DOIUrl":null,"url":null,"abstract":"Anonymous data exchange is in great demand in many situations, especially in remote control systems, in which a stable, secure, and secret data channel must be established between the controlling and controlled parties to distribute control commands and return data. In the previous work, we built a two-level Virtual-Space anonymous communication scheme based on the Crowds System for performing secret data exchange in remote control systems. However, as an essential part of security and anonymity, participating nodes’ identity declaration and session key agreement phases were not well designed. In this paper, we redesign the identity agreement and declaration process and design an identity-based Virtual-Space agreement method using the extended Chebyshev Chaotic Maps. In this approach, we transform the identity declaration process into a multilevel Virtual-Space agreement problem, where a series of security-progressive Virtual-Space addresses are negotiated between the controller and the controlled nodes. The protocol can handle the case where there are multiple controllers in the system, and the negotiated Virtual-Space depends on the identity of the controller and the controlled node, so different controllers do not affect each other. The designed protocol is verified on Freenet, and we conclude this paper with a detailed security analysis of the method to prove that the method satisfies forward security.","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"64 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/2023/8234537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Anonymous data exchange is in great demand in many situations, especially in remote control systems, in which a stable, secure, and secret data channel must be established between the controlling and controlled parties to distribute control commands and return data. In the previous work, we built a two-level Virtual-Space anonymous communication scheme based on the Crowds System for performing secret data exchange in remote control systems. However, as an essential part of security and anonymity, participating nodes’ identity declaration and session key agreement phases were not well designed. In this paper, we redesign the identity agreement and declaration process and design an identity-based Virtual-Space agreement method using the extended Chebyshev Chaotic Maps. In this approach, we transform the identity declaration process into a multilevel Virtual-Space agreement problem, where a series of security-progressive Virtual-Space addresses are negotiated between the controller and the controlled nodes. The protocol can handle the case where there are multiple controllers in the system, and the negotiated Virtual-Space depends on the identity of the controller and the controlled node, so different controllers do not affect each other. The designed protocol is verified on Freenet, and we conclude this paper with a detailed security analysis of the method to prove that the method satisfies forward security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于匿名身份的安全匿名虚拟空间协议方法,适用于基于人群的匿名通信计划
匿名数据交换在很多场合都有很大的需求,特别是在远程控制系统中,控制方和被控制方之间必须建立稳定、安全的秘密数据通道,以分发控制命令和返回数据。在之前的工作中,我们构建了一种基于乌鸦系统的两级虚拟空间匿名通信方案,用于在远程控制系统中执行秘密数据交换。然而,作为安全性和匿名性的重要组成部分,参与节点的身份声明和会话密钥协议阶段设计得不够完善。在本文中,我们重新设计了身份协议和声明过程,并利用扩展的切比雪夫混沌图设计了一种基于身份的虚拟空间协议方法。在这种方法中,我们将身份声明过程转化为一个多层次的虚拟空间协议问题,其中一系列安全渐进的虚拟空间地址在控制器和受控节点之间进行协商。该协议可以处理系统中存在多个控制器的情况,协商的虚拟空间取决于控制器和受控节点的身份,因此不同的控制器不会相互影响。本文最后对该方法进行了详细的安全性分析,证明该方法满足前向安全性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1