B. Sieglin, M. Maraschek, Anja Gude, F. Klossek, Federico Felici, Matthias Bernert, O. Kudlacek, A. Pau, W. Treutterer
{"title":"Disruption avoidance and investigation of the H-Mode density limit in ASDEX Upgrade","authors":"B. Sieglin, M. Maraschek, Anja Gude, F. Klossek, Federico Felici, Matthias Bernert, O. Kudlacek, A. Pau, W. Treutterer","doi":"10.1088/1361-6587/ad163a","DOIUrl":null,"url":null,"abstract":"\n In recent years a strong effort has been made to investigate disruption avoidance schemes in order to aid the development of integrated operational scenarios for ITER. Within the EUROfusion programme the disruptive H-Mode density limit (HDL) has been studied on the WPTE (Work Package Tokamak Exploitation) devices ASDEX Upgrade, TCV and JET. Advanced real-time control coupled with improved real-time diagnostics has enabled the routine disruption avoidance of the HDL. This allowed the systematic study of the influence of various plasma parameters on the onset and behaviour of the HDL in regimes not easily accessible otherwise. The upper triangularity δ top is found to have a significant influence on the X-Point Radiator (XPR), which plays a major role for the evolution of the disruptive HDL. At high δ top the gas flow rate at which the onset of the XPR occurs is strongly reduced compared to low δ top . The reduction of δ top has proven to be an effective actuator for the HDL disruption avoidance on ASDEX Upgrade. It is observed that the occurrence of the XPR and the H-L transition at the density limit are two separate events, the order of which depends on the applied auxiliary heating power. At sufficiently high heating power the XPR occurs before the H-L transition. Impurity seeding, used for divertor detachment, influences the onset and the dynamics of the XPR and the behaviour of the HDL. The stable existence of the XPR, which is thought to be a requirement for detachment control in future devices, has also been observed without impurity seeding. The implementation of a robust and sustainable operational scenario, e.g. for ITER, requires the combination of continuous control and exception handling. For each disruption path the appropriate observers and actuators have to be validated in present devices. Automation of the dynamic pulse schedule has proven successful to scan the operational space of the HDL without disruption. Applying such a technique to ITER could reduce the machine risk induced by disruptions during commissioning. The methodology to develop physics-based observers, which indicate the entry into a disruption path well in time, and applying the appropriate action before the discharge becomes unstable has proven successful.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"21 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad163a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years a strong effort has been made to investigate disruption avoidance schemes in order to aid the development of integrated operational scenarios for ITER. Within the EUROfusion programme the disruptive H-Mode density limit (HDL) has been studied on the WPTE (Work Package Tokamak Exploitation) devices ASDEX Upgrade, TCV and JET. Advanced real-time control coupled with improved real-time diagnostics has enabled the routine disruption avoidance of the HDL. This allowed the systematic study of the influence of various plasma parameters on the onset and behaviour of the HDL in regimes not easily accessible otherwise. The upper triangularity δ top is found to have a significant influence on the X-Point Radiator (XPR), which plays a major role for the evolution of the disruptive HDL. At high δ top the gas flow rate at which the onset of the XPR occurs is strongly reduced compared to low δ top . The reduction of δ top has proven to be an effective actuator for the HDL disruption avoidance on ASDEX Upgrade. It is observed that the occurrence of the XPR and the H-L transition at the density limit are two separate events, the order of which depends on the applied auxiliary heating power. At sufficiently high heating power the XPR occurs before the H-L transition. Impurity seeding, used for divertor detachment, influences the onset and the dynamics of the XPR and the behaviour of the HDL. The stable existence of the XPR, which is thought to be a requirement for detachment control in future devices, has also been observed without impurity seeding. The implementation of a robust and sustainable operational scenario, e.g. for ITER, requires the combination of continuous control and exception handling. For each disruption path the appropriate observers and actuators have to be validated in present devices. Automation of the dynamic pulse schedule has proven successful to scan the operational space of the HDL without disruption. Applying such a technique to ITER could reduce the machine risk induced by disruptions during commissioning. The methodology to develop physics-based observers, which indicate the entry into a disruption path well in time, and applying the appropriate action before the discharge becomes unstable has proven successful.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.