Zehao Zheng, Yang Liu, D. Shen, Fan Feng, Jiulong Liu, Yuexin Ma, Xiangwei Zhu
{"title":"Research on Pulsar Time Steered Atomic Time Algorithm Based on DPLL","authors":"Zehao Zheng, Yang Liu, D. Shen, Fan Feng, Jiulong Liu, Yuexin Ma, Xiangwei Zhu","doi":"10.1088/1674-4527/ad1659","DOIUrl":null,"url":null,"abstract":"\n In today's society, there is a wide demand for high-precision and high-stability time service in the fields of electric power, communication, transportation and finance. At present, the time standard in various countries is mainly based on atomic clocks, but the frequency drift of atomic clocks will affect the long-term stability performance. Compared with atomic clocks, millisecond pulsars have better long-term stability and can complement with the excellent short-term stability of atomic clocks. In order to improve the long-term stability of the atomic time scale, and then improve the timing accuracy, this paper proposes an algorithm for steering the Atomic clock ensemble (ACE) by Ensemble pulsar time (EPT) based on Digital phase locked loop (DPLL). Firstly, the ACE and EPT are generated by ALGOS algorithm, then the ACE is steered by EPT based on DPLL to calibrate the long-term frequency drift of the atomic clock, so that the generated steered atomic time follows both the short-term stability characteristics of ACE and the long-term stability characteristics of EPT, and finally, the steered atomic time is used to calibrate the local cesium clock. The experimental results show that the long-term stability of atomic time after steering is improved by 2 orders of magnitude compared with that before steering, and the daily drift of local cesium clock after calibration is less than 9.47ns in 3 years, 3 orders of magnitude higher than that before calibration on accuracy.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"50 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad1659","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In today's society, there is a wide demand for high-precision and high-stability time service in the fields of electric power, communication, transportation and finance. At present, the time standard in various countries is mainly based on atomic clocks, but the frequency drift of atomic clocks will affect the long-term stability performance. Compared with atomic clocks, millisecond pulsars have better long-term stability and can complement with the excellent short-term stability of atomic clocks. In order to improve the long-term stability of the atomic time scale, and then improve the timing accuracy, this paper proposes an algorithm for steering the Atomic clock ensemble (ACE) by Ensemble pulsar time (EPT) based on Digital phase locked loop (DPLL). Firstly, the ACE and EPT are generated by ALGOS algorithm, then the ACE is steered by EPT based on DPLL to calibrate the long-term frequency drift of the atomic clock, so that the generated steered atomic time follows both the short-term stability characteristics of ACE and the long-term stability characteristics of EPT, and finally, the steered atomic time is used to calibrate the local cesium clock. The experimental results show that the long-term stability of atomic time after steering is improved by 2 orders of magnitude compared with that before steering, and the daily drift of local cesium clock after calibration is less than 9.47ns in 3 years, 3 orders of magnitude higher than that before calibration on accuracy.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods