Determination Position and Initial Value of Aspheric Surface for Fisheye Lens Design

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-15 DOI:10.3390/photonics10121381
Lirong Fan, Ketao Yan, Guodong Qiao, Lijun Lu, Shuyuan Gao, Huadong Zheng
{"title":"Determination Position and Initial Value of Aspheric Surface for Fisheye Lens Design","authors":"Lirong Fan, Ketao Yan, Guodong Qiao, Lijun Lu, Shuyuan Gao, Huadong Zheng","doi":"10.3390/photonics10121381","DOIUrl":null,"url":null,"abstract":"The aspheric surface is a commonly used method to improve the imaging quality of the fisheye lens, but it is difficult to determine the position and initial value. Based on the wave aberration theory of the plane-symmetric optical system, a method of using an aspheric surface to design a fisheye lens is proposed, which can quickly determine the appropriate aspheric surface to improve the imaging performance. First, the wave aberration of each optical surface of the fisheye lens is calculated and its aberration characteristics are analyzed. Then, a numerical evaluation function is reported based on the aberration distribution of the fisheye lens on the image plane. According to the functional relationship between the evaluation function and the aspheric coefficient, the position of the aspheric surface and the initial value of the aspheric coefficient can be calculated. Finally, the adaptive and normalized real-coded genetic algorithm is used as the evaluation function to optimize the fisheye lens using an aspheric surface. The proposed method can provide an effective solution for designing a fisheye lens using an aspheric surface.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"54 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121381","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aspheric surface is a commonly used method to improve the imaging quality of the fisheye lens, but it is difficult to determine the position and initial value. Based on the wave aberration theory of the plane-symmetric optical system, a method of using an aspheric surface to design a fisheye lens is proposed, which can quickly determine the appropriate aspheric surface to improve the imaging performance. First, the wave aberration of each optical surface of the fisheye lens is calculated and its aberration characteristics are analyzed. Then, a numerical evaluation function is reported based on the aberration distribution of the fisheye lens on the image plane. According to the functional relationship between the evaluation function and the aspheric coefficient, the position of the aspheric surface and the initial value of the aspheric coefficient can be calculated. Finally, the adaptive and normalized real-coded genetic algorithm is used as the evaluation function to optimize the fisheye lens using an aspheric surface. The proposed method can provide an effective solution for designing a fisheye lens using an aspheric surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定鱼眼透镜设计中非球面的位置和初始值
非球面是改善鱼眼透镜成像质量的常用方法,但其位置和初始值很难确定。基于平面对称光学系统的波像差理论,提出了一种利用非球面设计鱼眼透镜的方法,可以快速确定合适的非球面,提高成像性能。首先,计算了鱼眼透镜各光学表面的波像差,并分析了其像差特性。然后,根据鱼眼透镜在像面上的像差分布,报告数值评估函数。根据评价函数和非球面系数之间的函数关系,可以计算出非球面的位置和非球面系数的初始值。最后,使用自适应归一化实编码遗传算法作为评价函数,对使用非球面的鱼眼透镜进行优化。所提出的方法可为使用非球面设计鱼眼透镜提供有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1