Reliability Analysis and Optimization Method of a Mechanical System Based on the Response Surface Method and Sensitivity Analysis Method

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-12-15 DOI:10.3390/act12120465
Lei Zhao, Pengfei Yue, Yang Zhao, Shiyan Sun
{"title":"Reliability Analysis and Optimization Method of a Mechanical System Based on the Response Surface Method and Sensitivity Analysis Method","authors":"Lei Zhao, Pengfei Yue, Yang Zhao, Shiyan Sun","doi":"10.3390/act12120465","DOIUrl":null,"url":null,"abstract":"Mechanical system reliability analysis constitutes a primary research focus in the field of engineering. This study aims to address the issue of complex mechanical systems with intricate mechanisms and nonlinear reliability equations that are challenging to solve. To this end, we present a reliability analysis and optimization methodology that merges the response surface and sensitivity analysis methods. A comprehensive formation of reliability assessment and optimization of complex mechanical systems is achieved by creating a response surface model to fit the complex state function and solving the reliability parameters, followed by an error sensitivity analysis to determine the mechanical system’s reliability adjustment strategy. Finally, these methods are applied to a cylindrical material transport device to preliminarily realize the reliability assessment and average reliability optimization goals. The study’s findings may offer a theoretical framework and research opportunities to evaluate and enhance the reliability of intricate mechanical systems.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"14 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical system reliability analysis constitutes a primary research focus in the field of engineering. This study aims to address the issue of complex mechanical systems with intricate mechanisms and nonlinear reliability equations that are challenging to solve. To this end, we present a reliability analysis and optimization methodology that merges the response surface and sensitivity analysis methods. A comprehensive formation of reliability assessment and optimization of complex mechanical systems is achieved by creating a response surface model to fit the complex state function and solving the reliability parameters, followed by an error sensitivity analysis to determine the mechanical system’s reliability adjustment strategy. Finally, these methods are applied to a cylindrical material transport device to preliminarily realize the reliability assessment and average reliability optimization goals. The study’s findings may offer a theoretical framework and research opportunities to evaluate and enhance the reliability of intricate mechanical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于响应面法和灵敏度分析法的机械系统可靠性分析和优化方法
机械系统可靠性分析是工程领域的一个主要研究重点。本研究旨在解决具有复杂机构和非线性可靠性方程的复杂机械系统的问题。为此,我们提出了一种融合响应面和灵敏度分析方法的可靠性分析和优化方法。通过建立响应面模型来拟合复杂的状态函数并求解可靠性参数,然后通过误差灵敏度分析来确定机械系统的可靠性调整策略,从而全面形成复杂机械系统的可靠性评估和优化方法。最后,将这些方法应用于圆柱形材料运输装置,初步实现了可靠性评估和平均可靠性优化目标。研究结果可为评估和提高复杂机械系统的可靠性提供理论框架和研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1