Mohamed Ahmed Omrane, Raphaël Côté, Vincent Demers
{"title":"Optimization of the printability envelope of low-viscosity powder-binder feedstocks used in material extrusion 3D printing","authors":"Mohamed Ahmed Omrane, Raphaël Côté, Vincent Demers","doi":"10.1108/rpj-08-2023-0266","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.\n\n\nDesign/methodology/approach\nFormulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures.\n\n\nFindings\nThree rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C.\n\n\nPractical implications\nMEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes.\n\n\nOriginality/value\nCorrelation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"1 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-08-2023-0266","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.
Design/methodology/approach
Formulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures.
Findings
Three rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C.
Practical implications
MEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes.
Originality/value
Correlation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation