Polarization-Based De-Scattering Imaging in Turbid Tissue-like Scattering Media

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-14 DOI:10.3390/photonics10121374
Shirong Zhang, Jian Liang, Yanru Jiang, Liyong Ren
{"title":"Polarization-Based De-Scattering Imaging in Turbid Tissue-like Scattering Media","authors":"Shirong Zhang, Jian Liang, Yanru Jiang, Liyong Ren","doi":"10.3390/photonics10121374","DOIUrl":null,"url":null,"abstract":"In shallow tissues of the human body, pathological changes often occur, and there are several kinds of scattering media, such as mucosa, fat, and blood, present on the surface of these tissues. In such scattering environments, it is difficult to distinguish the location of the lesions using traditional attenuation-based imaging methods, while polarization-based imaging methods are more sensitive to this information. Therefore, in this paper, we conducted experiments using diluted milk to simulate biological tissues with scattering effects, illuminated with non-polarized light sources, and used an optimized robust polarization de-scattering algorithm for image processing. The results were qualitatively and quantitatively analyzed through local intensity comparison and visual fidelity functions, verifying the effectiveness of this algorithm under specific conditions.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"22 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121374","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In shallow tissues of the human body, pathological changes often occur, and there are several kinds of scattering media, such as mucosa, fat, and blood, present on the surface of these tissues. In such scattering environments, it is difficult to distinguish the location of the lesions using traditional attenuation-based imaging methods, while polarization-based imaging methods are more sensitive to this information. Therefore, in this paper, we conducted experiments using diluted milk to simulate biological tissues with scattering effects, illuminated with non-polarized light sources, and used an optimized robust polarization de-scattering algorithm for image processing. The results were qualitatively and quantitatively analyzed through local intensity comparison and visual fidelity functions, verifying the effectiveness of this algorithm under specific conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浊组织样散射介质中基于偏振的去散射成像
人体浅层组织经常发生病变,这些组织表面存在多种散射介质,如粘膜、脂肪和血液。在这种散射环境中,使用传统的基于衰减的成像方法很难分辨出病变的位置,而基于偏振的成像方法对此信息更为敏感。因此,本文使用稀释牛奶模拟具有散射效应的生物组织,在非偏振光源的照射下进行实验,并使用优化的鲁棒偏振去散射算法进行图像处理。实验结果通过局部强度比较和视觉保真度函数进行了定性和定量分析,验证了该算法在特定条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1