Teng Long, Xuan Qin, Q. Wei, Luanxiao Zhao, Yang Wang, Feng Chen, Michael T. Myers, Yingcai Zheng, De-Hua Han
{"title":"QUANTIFYING THE INFLUENCE OF CLAY-BOUND WATER ON WAVE DISPERSION AND ATTENUATION SIGNATURES OF SHALE: AN EXPERIMENTAL STUDY","authors":"Teng Long, Xuan Qin, Q. Wei, Luanxiao Zhao, Yang Wang, Feng Chen, Michael T. Myers, Yingcai Zheng, De-Hua Han","doi":"10.1190/geo2022-0646.1","DOIUrl":null,"url":null,"abstract":"Understanding the elastic and attenuation signatures of shales is of considerable interest for unconventional reservoir characterization and sealing capacity evaluation for CO2 sequestration and nuclear waste disposal. We conducted laboratory measurements on seven shale samples at seismic frequencies (2100 Hz) to study the effects of clay-bound water (CBW) on their wave dispersion and attenuation signatures. With Nuclear Magnetic Resonance (NMR) and helium porosimeter, the volume of CBW in the shale samples is quantified. The forced-oscillation measurement reveals that Youngs modulus exhibits a continuous dispersion trend from 2 to 100 Hz. The extensional attenuation [Formula: see text] shows a weak frequency- and pressure-dependence on effective pressure ranging from 5 to 35 MPa. The magnitude of extensional attenuation shows a positive correlation with CBW, with an R-square value of 0.89. It is found that 4% of CBW in the rock frame causes roughly a 5% modulus increase from 2 to 100 Hz. We adopt a constant Q model for assigning frequency-dependent bulk and shear moduli to the CBW in the rock physics modeling, which can fit the experimental data of modulus dispersion and attenuation well, indicating that both the bulk and shear moduli of CBW in shales might behave viscoelastically.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0646.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the elastic and attenuation signatures of shales is of considerable interest for unconventional reservoir characterization and sealing capacity evaluation for CO2 sequestration and nuclear waste disposal. We conducted laboratory measurements on seven shale samples at seismic frequencies (2100 Hz) to study the effects of clay-bound water (CBW) on their wave dispersion and attenuation signatures. With Nuclear Magnetic Resonance (NMR) and helium porosimeter, the volume of CBW in the shale samples is quantified. The forced-oscillation measurement reveals that Youngs modulus exhibits a continuous dispersion trend from 2 to 100 Hz. The extensional attenuation [Formula: see text] shows a weak frequency- and pressure-dependence on effective pressure ranging from 5 to 35 MPa. The magnitude of extensional attenuation shows a positive correlation with CBW, with an R-square value of 0.89. It is found that 4% of CBW in the rock frame causes roughly a 5% modulus increase from 2 to 100 Hz. We adopt a constant Q model for assigning frequency-dependent bulk and shear moduli to the CBW in the rock physics modeling, which can fit the experimental data of modulus dispersion and attenuation well, indicating that both the bulk and shear moduli of CBW in shales might behave viscoelastically.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.