Giou-Teng Yiang, Wen-Lin Su, Cai-Mei Zheng, Min-Tser Liao, Tong-Hong Cheng, Chien-Lin Lu, Kuo-Cheng Lu
{"title":"The influence of uremic toxins on low bone turnover disease in chronic kidney disease","authors":"Giou-Teng Yiang, Wen-Lin Su, Cai-Mei Zheng, Min-Tser Liao, Tong-Hong Cheng, Chien-Lin Lu, Kuo-Cheng Lu","doi":"10.4103/tcmj.tcmj_212_23","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n \n Uremic toxins play a crucial role in the development of low bone turnover disease in chronic kidney disease (CKD) through the induction of oxidative stress. This oxidative stress disrupts the delicate balance between bone formation and resorption, resulting in a decline in both bone quantity and quality. Reactive oxygen species (ROS) activate nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, promoting osteoclastogenesis. Conversely, ROS hinder osteoblast differentiation by facilitating the binding of Forkhead box O proteins (FoxOs) to β-catenin, triggering apoptosis through FoxOs-activating kinase phosphorylation. This results in increased osteoblastic receptor activator of nuclear factor kappa-B ligand (RANKL) expression and decreased nuclear factor erythroid 2-related factor 2 levels, compromising antioxidant defenses against oxidative damage. As CKD progresses, the accumulation of protein-bound uremic toxins such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS) intensifies oxidative stress, primarily affecting osteoblasts. IS and PCS directly inhibit osteoblast viability, induce apoptosis, decrease alkaline phosphatase activity, and impair collagen 1 and osteonectin, impeding bone formation. They also reduce cyclic adenosine 3’,5’-monophosphate (cAMP) production and lower parathyroid hormone (PTH) receptor expression in osteoblasts, resulting in PTH hyporesponsiveness. In summary, excessive production of ROS by uremic toxins not only reduces the number and function of osteoblasts but also induces PTH hyporesponsiveness, contributing to the initiation and progression of low bone turnover disease in CKD.","PeriodicalId":45873,"journal":{"name":"Tzu Chi Medical Journal","volume":"55 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tzu Chi Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tcmj.tcmj_212_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Uremic toxins play a crucial role in the development of low bone turnover disease in chronic kidney disease (CKD) through the induction of oxidative stress. This oxidative stress disrupts the delicate balance between bone formation and resorption, resulting in a decline in both bone quantity and quality. Reactive oxygen species (ROS) activate nuclear factor kappa-B and mitogen-activated protein kinase signaling pathways, promoting osteoclastogenesis. Conversely, ROS hinder osteoblast differentiation by facilitating the binding of Forkhead box O proteins (FoxOs) to β-catenin, triggering apoptosis through FoxOs-activating kinase phosphorylation. This results in increased osteoblastic receptor activator of nuclear factor kappa-B ligand (RANKL) expression and decreased nuclear factor erythroid 2-related factor 2 levels, compromising antioxidant defenses against oxidative damage. As CKD progresses, the accumulation of protein-bound uremic toxins such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS) intensifies oxidative stress, primarily affecting osteoblasts. IS and PCS directly inhibit osteoblast viability, induce apoptosis, decrease alkaline phosphatase activity, and impair collagen 1 and osteonectin, impeding bone formation. They also reduce cyclic adenosine 3’,5’-monophosphate (cAMP) production and lower parathyroid hormone (PTH) receptor expression in osteoblasts, resulting in PTH hyporesponsiveness. In summary, excessive production of ROS by uremic toxins not only reduces the number and function of osteoblasts but also induces PTH hyporesponsiveness, contributing to the initiation and progression of low bone turnover disease in CKD.
期刊介绍:
The Tzu Chi Medical Journal is the peer-reviewed publication of the Buddhist Compassion Relief Tzu Chi Foundation, and includes original research papers on clinical medicine and basic science, case reports, clinical pathological pages, and review articles.