A Thermal Hydrodynamic Model for Emulsified Oil-Lubricated Tilting-Pad Thrust Bearings

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-13 DOI:10.3390/lubricants11120529
Ouyang Wu, Ziyang Yan, Xincong Zhou, Bin Luo, Bin Wang, Jian Huang
{"title":"A Thermal Hydrodynamic Model for Emulsified Oil-Lubricated Tilting-Pad Thrust Bearings","authors":"Ouyang Wu, Ziyang Yan, Xincong Zhou, Bin Luo, Bin Wang, Jian Huang","doi":"10.3390/lubricants11120529","DOIUrl":null,"url":null,"abstract":"On maritime vessels, external factors such as explosions, collisions, and grounding can cause the emulsification of lubricating oil by seawater pollution, which can affect the lubrication of a ship’s thrust bearing. To explore the influence of the mixed emulsification of lubricating oil and seawater on the lubrication performance of thrust bearings, this study conducted an emulsification experiment, from which the viscosity equation of the oil–water mixture was obtained. A thermal hydrodynamic model (THD) of bearings considering oil–water mixed emulsification was established, and the Finite Difference Method (FDM) was used for analysis. The results show that according to the characteristics of the manifold, the mixture is divided into water-in-oil (W/O) and oil-in-water (O/W). In the W/O flow with higher viscosity, the film thickness becomes higher, but the power loss increases. In the O/W manifold with low viscosity, the thin film easily causes mixed friction. In the demulsification stage of the mixed liquid, the thickness loss of the film is huge, and the collision between the thrust-bearing pad and the inference plate may cause the pad to be ablated. The influence of specific heat capacity on temperature is greater than the temperature rise caused by viscosity.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"35 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

On maritime vessels, external factors such as explosions, collisions, and grounding can cause the emulsification of lubricating oil by seawater pollution, which can affect the lubrication of a ship’s thrust bearing. To explore the influence of the mixed emulsification of lubricating oil and seawater on the lubrication performance of thrust bearings, this study conducted an emulsification experiment, from which the viscosity equation of the oil–water mixture was obtained. A thermal hydrodynamic model (THD) of bearings considering oil–water mixed emulsification was established, and the Finite Difference Method (FDM) was used for analysis. The results show that according to the characteristics of the manifold, the mixture is divided into water-in-oil (W/O) and oil-in-water (O/W). In the W/O flow with higher viscosity, the film thickness becomes higher, but the power loss increases. In the O/W manifold with low viscosity, the thin film easily causes mixed friction. In the demulsification stage of the mixed liquid, the thickness loss of the film is huge, and the collision between the thrust-bearing pad and the inference plate may cause the pad to be ablated. The influence of specific heat capacity on temperature is greater than the temperature rise caused by viscosity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳化油润滑斜垫推力轴承的热流体力学模型
在海运船舶上,爆炸、碰撞和搁浅等外部因素会导致润滑油被海水污染乳化,从而影响船舶推力轴承的润滑。为了探索润滑油和海水混合乳化对推力轴承润滑性能的影响,本研究进行了乳化实验,从中得出了油水混合物的粘度方程。建立了考虑油水混合乳化的轴承热流体力学模型(THD),并采用有限差分法(FDM)进行分析。结果表明,根据分流板的特性,混合物分为油包水型(W/O)和水包油型(O/W)。在粘度较高的油包水流动中,油膜厚度变大,但功率损耗增加。在粘度较低的油包水歧管中,薄膜很容易造成混合摩擦。在混合液的破乳化阶段,薄膜的厚度损失很大,推力轴承垫和推力板之间的碰撞可能导致轴承垫烧蚀。比热容对温度的影响大于粘度引起的温升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1