Unraveling the functioning of the vadose zone in alpine karst aquifers: New insights from a tracer test in the Migovec cave system (Julian alps, NW Slovenia)
F. Gabrovšek, Matej Blatnik, N. Ravbar, Jana Čarga, Miha Staut, M. Petrič
{"title":"Unraveling the functioning of the vadose zone in alpine karst aquifers: New insights from a tracer test in the Migovec cave system (Julian alps, NW Slovenia)","authors":"F. Gabrovšek, Matej Blatnik, N. Ravbar, Jana Čarga, Miha Staut, M. Petrič","doi":"10.3986/ac.v52i2-3.13348","DOIUrl":null,"url":null,"abstract":"The aquifers of alpine karst and high karst plateaus are abundant water resources. They are difficult to characterise due to their complex, partly glaciokarstic, evolution in active tectonic environments, and an unsaturated zone up to two kilometres thick. We present and discuss the results of a tracing test in the alpine karst of the Julian Alps (Slovenia), more precisely in the Migovec System, the longest cave system in Slovenia (length = 43 km, depth = 972 m). The cave extends below a mountain ridge that separates the Soča and Sava Valleys, thus forming a topographic divide between the Adriatic and Black Sea basins, which gives the test greater regional significance. In early September 2019, three kilograms of uranine were injected into a perched lake in a remote part of the system, approximately 900 metres below the plateau and 100 metres above the low water table. All known springs in the valleys on either side of the mountain were monitored by manual or instrumental sampling and a field fluorometer. Due to the unexpectedly dry season, no tracer was detected at any site for two months until a heavy rainfall event in early November. Subsequently, about 60-65 % of the tracer mass appeared within 60 hours in the Tolminka River. No tracer was detected at other sites, either becauseit was not present or because it was highly diluted. The study suggests that the lake containing the tracer is bypassed by the vadose flow and that the tracer was only mobilised during large events when the lake became part of the epihreatic flow. The linear peak flow velocity from the injection site to the Tolminka Spring was only about 1.7 m/h. However, assuming that the tracer was only mobilised by the large rain event, the velocity would be 70 m/h. The study highlights the challenges and pitfalls of water tracing in alpine karst systems and suggests ways to avoid them.","PeriodicalId":50905,"journal":{"name":"Acta Carsologica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Carsologica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3986/ac.v52i2-3.13348","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aquifers of alpine karst and high karst plateaus are abundant water resources. They are difficult to characterise due to their complex, partly glaciokarstic, evolution in active tectonic environments, and an unsaturated zone up to two kilometres thick. We present and discuss the results of a tracing test in the alpine karst of the Julian Alps (Slovenia), more precisely in the Migovec System, the longest cave system in Slovenia (length = 43 km, depth = 972 m). The cave extends below a mountain ridge that separates the Soča and Sava Valleys, thus forming a topographic divide between the Adriatic and Black Sea basins, which gives the test greater regional significance. In early September 2019, three kilograms of uranine were injected into a perched lake in a remote part of the system, approximately 900 metres below the plateau and 100 metres above the low water table. All known springs in the valleys on either side of the mountain were monitored by manual or instrumental sampling and a field fluorometer. Due to the unexpectedly dry season, no tracer was detected at any site for two months until a heavy rainfall event in early November. Subsequently, about 60-65 % of the tracer mass appeared within 60 hours in the Tolminka River. No tracer was detected at other sites, either becauseit was not present or because it was highly diluted. The study suggests that the lake containing the tracer is bypassed by the vadose flow and that the tracer was only mobilised during large events when the lake became part of the epihreatic flow. The linear peak flow velocity from the injection site to the Tolminka Spring was only about 1.7 m/h. However, assuming that the tracer was only mobilised by the large rain event, the velocity would be 70 m/h. The study highlights the challenges and pitfalls of water tracing in alpine karst systems and suggests ways to avoid them.
期刊介绍:
Karst areas occupy 10-20 % of ice-free land. Dissolution of rock by natural waters has given rise to specific landscape and underground. Karst surface features and caves have attracted man''s curiosity since the dawn of humanity and have been a focus to scientific studies since more than half of millennia.
Acta Carsologica publishes original research papers and reviews, letters, essays and reports covering topics related to specific of karst areas. These comprise, but are not limited to karst geology, hydrology, and geomorphology, speleology, hydrogeology, biospeleology and history of karst science.