Investigating Hessian-based inversion velocity analysis

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2023-12-13 DOI:10.1190/geo2022-0689.1
Carlos A. M. Assis, Hervé Chauris, F. Audebert, Paul Williamson
{"title":"Investigating Hessian-based inversion velocity analysis","authors":"Carlos A. M. Assis, Hervé Chauris, F. Audebert, Paul Williamson","doi":"10.1190/geo2022-0689.1","DOIUrl":null,"url":null,"abstract":"Inversion velocity analysis (IVA) is an image domain method built upon the spatial scale separation of the model. Accordingly, the IVA method is performed with an iterative process composed of two minimization steps consisting of migration (inner loop) and tomography (outer loop), respectively, with each step accounting for its Hessian or not. The migration part provides the common image gathers (CIGs) with extension in the horizontal subsurface offset. Then, the differential semblance optimization (DSO) misfit measures the focusing of the events in the CIGs which indicates the quality of the velocity model. Commonly, the velocity updates are obtained from the DSO gradient. IVA is a modified version where the approximate inverse replaces the adjoint of the inner loop process: in that case, the migration Hessian is approximately diagonal in the high-frequency regime. In this work, we report the implementation of the tomographic Hessian (i.e., the second derivative of the DSO misfit with respect to the background model) for the estimation of the background velocity model. We apply the second-order adjoint-state method to obtain the application of the tomographic Hessian on a vector. Then, we use the truncated-Newton method to obtain the update directions by computing approximately the application of the inverse of the tomographic Hessian on the descent direction. We also make a theoretical comparison between the tomography in the IVA and full-waveform inversion contexts. Two numerical examples are used to compare, in terms of geophysical results and computational costs, the truncated-Newton method with different gradient-based optimization methods applied to IVA. A small model allows us to evaluate the eigenvalues of the tomographic Hessian which explains the large damping needed in the truncated-Newton case.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"33 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0689.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inversion velocity analysis (IVA) is an image domain method built upon the spatial scale separation of the model. Accordingly, the IVA method is performed with an iterative process composed of two minimization steps consisting of migration (inner loop) and tomography (outer loop), respectively, with each step accounting for its Hessian or not. The migration part provides the common image gathers (CIGs) with extension in the horizontal subsurface offset. Then, the differential semblance optimization (DSO) misfit measures the focusing of the events in the CIGs which indicates the quality of the velocity model. Commonly, the velocity updates are obtained from the DSO gradient. IVA is a modified version where the approximate inverse replaces the adjoint of the inner loop process: in that case, the migration Hessian is approximately diagonal in the high-frequency regime. In this work, we report the implementation of the tomographic Hessian (i.e., the second derivative of the DSO misfit with respect to the background model) for the estimation of the background velocity model. We apply the second-order adjoint-state method to obtain the application of the tomographic Hessian on a vector. Then, we use the truncated-Newton method to obtain the update directions by computing approximately the application of the inverse of the tomographic Hessian on the descent direction. We also make a theoretical comparison between the tomography in the IVA and full-waveform inversion contexts. Two numerical examples are used to compare, in terms of geophysical results and computational costs, the truncated-Newton method with different gradient-based optimization methods applied to IVA. A small model allows us to evaluate the eigenvalues of the tomographic Hessian which explains the large damping needed in the truncated-Newton case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于赫塞斯的反演速度分析研究
反演速度分析(IVA)是一种建立在模型空间尺度分离基础上的图像域方法。因此,IVA 方法采用迭代过程,由两个最小化步骤组成,分别是迁移(内循环)和层析(外循环),每个步骤都考虑了其赫塞斯与否。迁移部分提供在水平地下偏移中延伸的普通图像采集(CIG)。然后,微分形似优化(DSO)失配测量 CIGs 中事件的聚焦情况,这表明速度模型的质量。通常,速度更新是通过 DSO 梯度获得的。IVA 是一个改进版本,其中近似逆过程取代了内循环过程的邻接过程:在这种情况下,迁移赫塞斯在高频情况下近似对角。在这项工作中,我们报告了用于估计本底速度模型的层析成像 Hessian(即 DSO 与本底模型不拟合的二阶导数)的实施情况。我们应用二阶邻接态方法来获得矢量上的层析 Hessian 应用。然后,我们使用截断牛顿法,通过近似计算断层赫塞斯逆应用于下降方向来获得更新方向。我们还对 IVA 和全波形反演背景下的层析成像进行了理论比较。在地球物理结果和计算成本方面,我们用两个数值例子比较了截断牛顿法和应用于 IVA 的不同梯度优化方法。通过一个小型模型,我们可以评估层析 Hessian 的特征值,从而解释截断牛顿法所需的大阻尼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
TRAIL C1595T Variant Critically Alters the Level of sTRAIL in Terms of Histopathological Parameters in Colorectal Cancer. The Effect of Height on Adverse Short-Term Outcomes After Lower-Extremity Bypass Surgery in Patients with Diabetes Mellitus. Stress-dependent reflection and transmission of elastic waves under confining, uniaxial, and pure shear prestresses DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images Improvement of quality of life after 2-month exoskeleton training in patients with chronic spinal cord injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1