The Birefringence and Extinction Coefficient of Ferroelectric Liquid Crystals in the Terahertz Range

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-13 DOI:10.3390/photonics10121368
Ying Ma, Yuhang Shan, Yongning Cheng, Ruisheng Yang, H. Kwok, Jianlin Zhao
{"title":"The Birefringence and Extinction Coefficient of Ferroelectric Liquid Crystals in the Terahertz Range","authors":"Ying Ma, Yuhang Shan, Yongning Cheng, Ruisheng Yang, H. Kwok, Jianlin Zhao","doi":"10.3390/photonics10121368","DOIUrl":null,"url":null,"abstract":"In this paper, the refractive index and extinction coefficient of ferroelectric liquid crystals have been examined by the terahertz time-domain spectroscopy system. Two modes of ferroelectric liquid crystal materials, deformed helix ferroelectric liquid crystal (DHFLC), and electric suppressed helix ferroelectric liquid crystal (ESHFLC) are tested as experimental samples. Nematic liquid crystal (NLC) was also investigated for comparison. The birefringence of DHFLC 587 slowly increases with the growth of frequency, and it averages at 0.115. Its extinction coefficients gradually incline to their stable states at 0.06 for o-wave and 0.04 for e-wave. The birefringence of ESHFLC FD4004N remains between around 0.165 and 0.175, and both of its e-wave and o-wave extinction coefficients are under 0.1, ranging from 0.05 to 0.09. These results of FLC will facilitate the examination and improve the response performance of THz devices using fast liquid crystal materials.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"134 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121368","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the refractive index and extinction coefficient of ferroelectric liquid crystals have been examined by the terahertz time-domain spectroscopy system. Two modes of ferroelectric liquid crystal materials, deformed helix ferroelectric liquid crystal (DHFLC), and electric suppressed helix ferroelectric liquid crystal (ESHFLC) are tested as experimental samples. Nematic liquid crystal (NLC) was also investigated for comparison. The birefringence of DHFLC 587 slowly increases with the growth of frequency, and it averages at 0.115. Its extinction coefficients gradually incline to their stable states at 0.06 for o-wave and 0.04 for e-wave. The birefringence of ESHFLC FD4004N remains between around 0.165 and 0.175, and both of its e-wave and o-wave extinction coefficients are under 0.1, ranging from 0.05 to 0.09. These results of FLC will facilitate the examination and improve the response performance of THz devices using fast liquid crystal materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹范围内铁电液晶的双折射和消光系数
本文利用太赫兹时域光谱系统研究了铁电液晶的折射率和消光系数。以变形螺旋铁电液晶(DHFLC)和电抑制螺旋铁电液晶(ESHFLC)两种模式的铁电液晶材料为实验样品进行了测试。此外,还对向列液晶(NLC)进行了对比研究。DHFLC 587 的双折射随频率的增长而缓慢增加,平均值为 0.115。其消光系数逐渐趋于稳定状态,o 波为 0.06,e 波为 0.04。ESHFLC FD4004N 的双折射保持在 0.165 至 0.175 之间,其 e 波和 o 波消光系数均低于 0.1,在 0.05 至 0.09 之间。FLC的这些结果将有助于检验和改进使用快速液晶材料的太赫兹器件的响应性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1