{"title":"Applications of generative models with a latent observation subspace in vibrodiagnostics","authors":"A. Puchalski, I. Komorska","doi":"10.29354/diag/176854","DOIUrl":null,"url":null,"abstract":"The vibration signal is one of the most essential diagnostic signals, the analysis of which allows for determining the dynamic state of the monitored machine set. In the era of cyber-physical industrial systems, making diagnostic decisions involves the study of large databases from previous registers and data downloaded from machines in real-time. However, the recorded signals mainly concern the operational status of the monitored object. Insufficient training data regarding failure states hinders the operation of classification algorithms. Progress in machine learning has created a new avenue for the advancement of diagnostic methods based on models. These methods now have the capability to produce signals through random sampling from a hidden space or generate fresh instances of input data from noise. The article suggests the use of a Generative Adversarial Network (GAN) model as a tool to create synthetic measurement observations for vibration monitoring. The effectiveness of the synthetic data generation algorithm was verified on the example of the vibration signal recorded during tests of the drive system of a motor vehicle.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"103 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/176854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The vibration signal is one of the most essential diagnostic signals, the analysis of which allows for determining the dynamic state of the monitored machine set. In the era of cyber-physical industrial systems, making diagnostic decisions involves the study of large databases from previous registers and data downloaded from machines in real-time. However, the recorded signals mainly concern the operational status of the monitored object. Insufficient training data regarding failure states hinders the operation of classification algorithms. Progress in machine learning has created a new avenue for the advancement of diagnostic methods based on models. These methods now have the capability to produce signals through random sampling from a hidden space or generate fresh instances of input data from noise. The article suggests the use of a Generative Adversarial Network (GAN) model as a tool to create synthetic measurement observations for vibration monitoring. The effectiveness of the synthetic data generation algorithm was verified on the example of the vibration signal recorded during tests of the drive system of a motor vehicle.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.