{"title":"Active and Reactive Power loss Minimization Along with Voltage profile Improvement for Distribution Reconfiguration","authors":"Ola Badran, Jafar Jallad","doi":"10.32985/ijeces.14.10.12","DOIUrl":null,"url":null,"abstract":"Optimal distribution network reconfiguration (DNR), distributed generations location and sizing (DGs-LS), tap changer adjustment (TCA), and capacitors bank location and sizing (CAs-SL) are different methodologies used to reduce loss and enhance the voltage profile of distribution systems. DNR is the process of changing the network topography by changing both sectionalized and tie switch states. The optimal location looks to find the optimal setting of the DG and CA within the distribution network. Optimal size seeks to find the optimal output generation of both DG and CA. The TCA looks to find the optimal position for TC. These methods are challenging optimization problems and resort to meta-heuristic techniques to find a globally optimal solution. This paper presents a new methodology with which to simultaneously solve the problem of DNR, DGs-LS, TCA, and CAs-SL in distribution networks. This work aims to minimize active and reactive power losses, including voltage profile improvement using a multi-objective decision approach. The firefly algorithm (FA) and analytic hierarchy process (AHP) are used to optimize the fitness function and determine the function weight factors through the use of MATLAB software. Several scenarios were considered on the IEEE 69-bus network. In terms of active power and reactive losses, reductions in the test system of 96.16% and 92.7%, respectively, were achieved, evidencing the positive impact of the proposed methodology on distribution networks.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"1 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.10.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal distribution network reconfiguration (DNR), distributed generations location and sizing (DGs-LS), tap changer adjustment (TCA), and capacitors bank location and sizing (CAs-SL) are different methodologies used to reduce loss and enhance the voltage profile of distribution systems. DNR is the process of changing the network topography by changing both sectionalized and tie switch states. The optimal location looks to find the optimal setting of the DG and CA within the distribution network. Optimal size seeks to find the optimal output generation of both DG and CA. The TCA looks to find the optimal position for TC. These methods are challenging optimization problems and resort to meta-heuristic techniques to find a globally optimal solution. This paper presents a new methodology with which to simultaneously solve the problem of DNR, DGs-LS, TCA, and CAs-SL in distribution networks. This work aims to minimize active and reactive power losses, including voltage profile improvement using a multi-objective decision approach. The firefly algorithm (FA) and analytic hierarchy process (AHP) are used to optimize the fitness function and determine the function weight factors through the use of MATLAB software. Several scenarios were considered on the IEEE 69-bus network. In terms of active power and reactive losses, reductions in the test system of 96.16% and 92.7%, respectively, were achieved, evidencing the positive impact of the proposed methodology on distribution networks.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.