Exploring the features of Von-Karman flow of tangent hyperbolic fluid over a radially stretching disk subject to heating due to porous media and viscous heating

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED Modern Physics Letters B Pub Date : 2023-12-12 DOI:10.1142/s0217984924501355
P. Bartwal, Himanshu Upreti, S. R. Mishra, A. Pandey
{"title":"Exploring the features of Von-Karman flow of tangent hyperbolic fluid over a radially stretching disk subject to heating due to porous media and viscous heating","authors":"P. Bartwal, Himanshu Upreti, S. R. Mishra, A. Pandey","doi":"10.1142/s0217984924501355","DOIUrl":null,"url":null,"abstract":"The fluid flow over rotating disk has various applications in the field of medical sciences, science and engineering i.e. medical equipment, gas turbine rotors, rheometers, oceanic circulation, and computer storage devices. Keeping this in mind, the task of this study is to observe the tangent hyperbolic fluid flow behaviors through a rotating disk in the presence of Ohmic heating, thermal radiation, viscous dissipation and heating due to porous media. The bvp4c numerical method is applied to solve the transformed governing equations. The impact of acting parameters i.e. magnetic field, porosity parameter, radiation, Weissenberg number and Eckert number on the velocities (radial, azimuthal and axial) and temperature distributions are revealed through graphs for the case of Newtonian and non-Newtonian fluids by considering no rotation ([Formula: see text]) and rotation parameter ([Formula: see text]). From the results, it is noticed that the resistivity offered by the increasing porosity increases the rate of heat transfer in magnitude for the case of no rotation while in case of rotation, it retards significantly. For the validation of this study, a comparison of our results with previous published work is conducted.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501355","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The fluid flow over rotating disk has various applications in the field of medical sciences, science and engineering i.e. medical equipment, gas turbine rotors, rheometers, oceanic circulation, and computer storage devices. Keeping this in mind, the task of this study is to observe the tangent hyperbolic fluid flow behaviors through a rotating disk in the presence of Ohmic heating, thermal radiation, viscous dissipation and heating due to porous media. The bvp4c numerical method is applied to solve the transformed governing equations. The impact of acting parameters i.e. magnetic field, porosity parameter, radiation, Weissenberg number and Eckert number on the velocities (radial, azimuthal and axial) and temperature distributions are revealed through graphs for the case of Newtonian and non-Newtonian fluids by considering no rotation ([Formula: see text]) and rotation parameter ([Formula: see text]). From the results, it is noticed that the resistivity offered by the increasing porosity increases the rate of heat transfer in magnitude for the case of no rotation while in case of rotation, it retards significantly. For the validation of this study, a comparison of our results with previous published work is conducted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索多孔介质和粘性加热导致切线双曲线流体在径向拉伸圆盘上的冯-卡门流动特征
旋转盘上的流体流动在医学、科学和工程领域(如医疗设备、燃气轮机转子、流变仪、海洋环流和计算机存储设备)有着广泛的应用。有鉴于此,本研究的任务是观察在存在欧姆加热、热辐射、粘性耗散和多孔介质加热的情况下,流体在旋转盘上的切线双曲面流动行为。采用 bvp4c 数值方法求解转换后的控制方程。在牛顿流体和非牛顿流体的情况下,考虑不旋转([公式:见正文])和旋转参数([公式:见正文]),通过图表揭示了作用参数(即磁场、孔隙度参数、辐射、魏森伯格数和埃克特数)对速度(径向、方位角和轴向)和温度分布的影响。从结果中可以看出,在不旋转的情况下,孔隙率增加所带来的电阻率会显著提高传热速率,而在旋转的情况下,则会明显降低传热速率。为了验证这项研究,我们将研究结果与之前发表的研究成果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
Enhanced magnetoresistance properties in La0.7−xSmxCa0.3MnO3 epitaxial films Synthesis of mulberry-like Fe nanoparticles assembly by nano-spheres and its excellent electromagnetic absorption properties Design of NiO–ZnCo2O4 heterostructures for room temperature H2S sensing Astrophysical expedition: Transit search heuristics for fractional Hammerstein control autoregressive models Investigation of electrolysis corrosion on marine propellers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1