I. Budzulyak, L. Yablon, M. Khemii, V. Kotsyubynsky, B. Rachiy, V. Boychuk, І.І. Budzulyak
{"title":"Energy state of the electronic subsystem of porous carbon material caused by laser irradiation","authors":"I. Budzulyak, L. Yablon, M. Khemii, V. Kotsyubynsky, B. Rachiy, V. Boychuk, І.І. Budzulyak","doi":"10.15330/pcss.24.4.662-669","DOIUrl":null,"url":null,"abstract":"The changes in the electronic subsystem of a porous carbon material caused by its doping with Mn, Cr, and Fe and laser irradiation were studied by the method of electron paramagnetic resonance. It has been found that Mn doping leads to the appearance of several paramagnetic centers, and laser irradiation facilitates the redistribution of electrons between different states so that their mobility increases due to the transition from the g = 3.9 to the g = 6.0 state. The Mössbauer spectroscopy of porous Fe-doped carbon material indicates the presence of oxygen ligands for iron ions, in particular the formation of octa- and tetra-complexes with redistribution of electron density between iron and oxygen nuclei, and, accordingly, changes in the degree of covalence of the chemical bond from Fe3+ to Fe2+.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"20 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.4.662-669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The changes in the electronic subsystem of a porous carbon material caused by its doping with Mn, Cr, and Fe and laser irradiation were studied by the method of electron paramagnetic resonance. It has been found that Mn doping leads to the appearance of several paramagnetic centers, and laser irradiation facilitates the redistribution of electrons between different states so that their mobility increases due to the transition from the g = 3.9 to the g = 6.0 state. The Mössbauer spectroscopy of porous Fe-doped carbon material indicates the presence of oxygen ligands for iron ions, in particular the formation of octa- and tetra-complexes with redistribution of electron density between iron and oxygen nuclei, and, accordingly, changes in the degree of covalence of the chemical bond from Fe3+ to Fe2+.