{"title":"High-accuracy NLOS identification based on random forest and high-precision positioning on 60 GHz millimeter wave","authors":"Qiuna Niu, Wei Shi, Yongdao Xu, Weijun Wen","doi":"10.23919/JCC.fa.2021-0742.202312","DOIUrl":null,"url":null,"abstract":"60 GHz millimeter wave (mmWave) system provides extremely high time resolution and multipath components (MPC) separation and has great potential to achieve high precision in the indoor positioning. However, the ranging data is often contaminated by non-line-of-sight (NLOS) transmission. First, six features of 60GHz mmWave signal under LOS and NLOS conditions are evaluated. Next, a classifier constructed by random forest (RF) algorithm is used to identify line-of-sight (LOS) or NLOS channel. The identification mechanism has excellent generalization performance and the classification accuracy is over 97%. Finally, based on the identification results, a residual weighted least squares positioning method is proposed. All ranging information including that under NLOS channels is fully utilized, positioning failure caused by insufficient LOS links can be avoided. Compared with the conventional least squares approach, the positioning error of the proposed algorithm is reduced by 49%.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"1 2","pages":"96-110"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2021-0742.202312","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
60 GHz millimeter wave (mmWave) system provides extremely high time resolution and multipath components (MPC) separation and has great potential to achieve high precision in the indoor positioning. However, the ranging data is often contaminated by non-line-of-sight (NLOS) transmission. First, six features of 60GHz mmWave signal under LOS and NLOS conditions are evaluated. Next, a classifier constructed by random forest (RF) algorithm is used to identify line-of-sight (LOS) or NLOS channel. The identification mechanism has excellent generalization performance and the classification accuracy is over 97%. Finally, based on the identification results, a residual weighted least squares positioning method is proposed. All ranging information including that under NLOS channels is fully utilized, positioning failure caused by insufficient LOS links can be avoided. Compared with the conventional least squares approach, the positioning error of the proposed algorithm is reduced by 49%.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.