Deep learning based signal detector for OFDM systems

IF 3.1 3区 计算机科学 Q2 TELECOMMUNICATIONS China Communications Pub Date : 2023-12-01 DOI:10.23919/JCC.fa.2021-0347.202312
Guangliang Pan, Wei Wang, Minglei Li
{"title":"Deep learning based signal detector for OFDM systems","authors":"Guangliang Pan, Wei Wang, Minglei Li","doi":"10.23919/JCC.fa.2021-0347.202312","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel deep learning (DL)-based receiver design for orthogonal frequency division multiplexing (OFDM) systems. The entire process of channel estimation, equalization, and signal detection is replaced by a neural network (NN), and hence, the detector is called a NN detector (N2D). First, an OFDM signal model is established. We analyze both temporal and spectral characteristics of OFDM signals, which are the motivation for DL. Then, the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory (Bi-LSTM) NN. Especially, a discriminator (F) is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain (OCG), which can greatly improve the performance of the detector. Finally, the trained N2D is used for online recovery of OFDM symbols. The performance of the proposed N2D is analyzed theoretically in terms of bit error rate (BER) by Monte Carlo simulation under different parameter scenarios. The simulation results demonstrate that the BER of N2D is obviously lower than other algorithms, especially at high signal-to-noise ratios (SNRs). Meanwhile, the proposed N2D is robust to the fluctuation of parameter values.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"39 1","pages":"66-77"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2021-0347.202312","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel deep learning (DL)-based receiver design for orthogonal frequency division multiplexing (OFDM) systems. The entire process of channel estimation, equalization, and signal detection is replaced by a neural network (NN), and hence, the detector is called a NN detector (N2D). First, an OFDM signal model is established. We analyze both temporal and spectral characteristics of OFDM signals, which are the motivation for DL. Then, the generated data based on the simulation of channel statistics is used for offline training of bi-directional long short-term memory (Bi-LSTM) NN. Especially, a discriminator (F) is added to the input of Bi-LSTM NN to look for subcarrier transmission data with optimal channel gain (OCG), which can greatly improve the performance of the detector. Finally, the trained N2D is used for online recovery of OFDM symbols. The performance of the proposed N2D is analyzed theoretically in terms of bit error rate (BER) by Monte Carlo simulation under different parameter scenarios. The simulation results demonstrate that the BER of N2D is obviously lower than other algorithms, especially at high signal-to-noise ratios (SNRs). Meanwhile, the proposed N2D is robust to the fluctuation of parameter values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的 OFDM 系统信号检测器
本文针对正交频分复用(OFDM)系统提出了一种基于深度学习(DL)的新型接收器设计。整个信道估计、均衡和信号检测过程都由神经网络(NN)代替,因此该检测器被称为 NN 检测器(N2D)。首先,我们建立了一个 OFDM 信号模型。我们分析了 OFDM 信号的时间和频谱特征,这是 DL 的动机。然后,基于信道统计模拟生成的数据被用于离线训练双向长短期记忆(Bi-LSTM)NN。特别是在 Bi-LSTM NN 的输入中加入判别器(F),以寻找具有最佳信道增益(OCG)的子载波传输数据,这可以大大提高检测器的性能。最后,经过训练的 N2D 被用于在线恢复 OFDM 符号。在不同参数情况下,通过蒙特卡洛仿真从误码率(BER)的角度对所提出的 N2D 性能进行了理论分析。仿真结果表明,N2D 的误码率明显低于其他算法,尤其是在高信噪比(SNR)条件下。同时,所提出的 N2D 对参数值的波动具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
China Communications
China Communications 工程技术-电信学
CiteScore
8.00
自引率
12.20%
发文量
2868
审稿时长
8.6 months
期刊介绍: China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide. The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology. China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.
期刊最新文献
Secure short-packet transmission in uplink massive MU-MIMO assisted URLLC under imperfect CSI IoV and blockchain-enabled driving guidance strategy in complex traffic environment Multi-source underwater DOA estimation using PSO-BP neural network based on high-order cumulant optimization An overview of interactive immersive services Performance analysis in SWIPT-based bidirectional D2D communications in cellular networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1