London street crime analysis and prediction using crowdsourced dataset

Ahmed Yunus, Jonathan Loo
{"title":"London street crime analysis and prediction using crowdsourced dataset","authors":"Ahmed Yunus,&nbsp;Jonathan Loo","doi":"10.1016/j.jcmds.2023.100089","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively prevent crimes, it is vital to anticipate their patterns and likely occurrences. Our efforts focused on analyzing diverse open-source datasets related to London, such as the Met police records, public social media posts, data from transportation hubs like bus and rail stations etc. These datasets provided rich insights into human behaviors, activities, and demographics across different parts of London, paving the way for a machine learning-driven prediction system. We developed this system using unique crime-related features extracted from these datasets. Furthermore, our study outlined methods to gather detailed street-level information from local communities using various applications. This innovative approach significantly enhances our ability to deeply understand and predict crime patterns. The proposed predictive system has the potential to forecast potential crimes in advance, enabling government bodies to proactively deploy targeted interventions, ultimately aiming to prevent and address criminal incidents more effectively.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"10 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415823000160/pdfft?md5=9901b92589c99927f4a51aa0d969d7a5&pid=1-s2.0-S2772415823000160-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415823000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To effectively prevent crimes, it is vital to anticipate their patterns and likely occurrences. Our efforts focused on analyzing diverse open-source datasets related to London, such as the Met police records, public social media posts, data from transportation hubs like bus and rail stations etc. These datasets provided rich insights into human behaviors, activities, and demographics across different parts of London, paving the way for a machine learning-driven prediction system. We developed this system using unique crime-related features extracted from these datasets. Furthermore, our study outlined methods to gather detailed street-level information from local communities using various applications. This innovative approach significantly enhances our ability to deeply understand and predict crime patterns. The proposed predictive system has the potential to forecast potential crimes in advance, enabling government bodies to proactively deploy targeted interventions, ultimately aiming to prevent and address criminal incidents more effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用众包数据集进行伦敦街头犯罪分析和预测
为了有效预防犯罪,预测犯罪模式和可能发生的情况至关重要。我们的工作重点是分析与伦敦有关的各种开源数据集,如伦敦警察局的记录、公共社交媒体的帖子、公交车站和火车站等交通枢纽的数据等。这些数据集提供了有关伦敦不同地区人类行为、活动和人口统计的丰富信息,为机器学习驱动的预测系统铺平了道路。我们利用从这些数据集中提取的与犯罪相关的独特特征开发了这一系统。此外,我们的研究还概述了利用各种应用程序从当地社区收集详细街道信息的方法。这种创新方法大大提高了我们深入了解和预测犯罪模式的能力。所提出的预测系统有可能提前预测潜在的犯罪,使政府机构能够积极部署有针对性的干预措施,最终达到更有效地预防和解决犯罪事件的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1