{"title":"Numerical Investigation of Member Stiffness in Composite Sandwich Bolted Connections","authors":"","doi":"10.1007/s11223-023-00590-9","DOIUrl":null,"url":null,"abstract":"<p>Member stiffness in bolted connections has been widely studied for homogenous and isotropic materials contrary to composite sandwich ones. Therefore, a numerical simulation based on the augmented Lagrangian algorithm to solve contacts problems is conducted in ANSYS software to investigate various preloaded sandwich bolted joints with carbon and glass laminate skins and two types of foam cores. Tested samples show a rise of the ratio of maximum shear stress to maximum principal stress when the applied preload increases considerably which improves the risk of core failure, additionally, an analytical approximation of stiffness at preload is proposed, for that, a search algorithm is used to deduce the expression of the equivalent elastic modulus of tested joint members and a distance correlation method is applied to determine the theoretical formulation of the introduced stiffness model whose accuracy is optimized through analyzing results of root mean square error (RMSE) of its mathematical approximations , the convergence of the chosen model is ensured for all tested samples except the ones having the most rigid skins with the greatest elastic modulus (209 GPa). Furthermore, the equation introduced by Zhang and Poirier concerning the tension load causing a bolted joint separation is adapted and validated with a percent error less than 13%.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-023-00590-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Member stiffness in bolted connections has been widely studied for homogenous and isotropic materials contrary to composite sandwich ones. Therefore, a numerical simulation based on the augmented Lagrangian algorithm to solve contacts problems is conducted in ANSYS software to investigate various preloaded sandwich bolted joints with carbon and glass laminate skins and two types of foam cores. Tested samples show a rise of the ratio of maximum shear stress to maximum principal stress when the applied preload increases considerably which improves the risk of core failure, additionally, an analytical approximation of stiffness at preload is proposed, for that, a search algorithm is used to deduce the expression of the equivalent elastic modulus of tested joint members and a distance correlation method is applied to determine the theoretical formulation of the introduced stiffness model whose accuracy is optimized through analyzing results of root mean square error (RMSE) of its mathematical approximations , the convergence of the chosen model is ensured for all tested samples except the ones having the most rigid skins with the greatest elastic modulus (209 GPa). Furthermore, the equation introduced by Zhang and Poirier concerning the tension load causing a bolted joint separation is adapted and validated with a percent error less than 13%.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.