{"title":"Biochemical analysis of H2O2-induced mutation spectra revealed that multiple damages were involved in the mutational process","authors":"Tomohiko Sugiyama , Mahima R. Sanyal","doi":"10.1016/j.dnarep.2023.103617","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive oxygen species (ROS) are a major threat to genomic integrity and believed to be one of the etiologies of cancers. Here we developed a cell-free system to analyze ROS-induced mutagenesis, in which DNA was exposed to H<sub>2</sub>O<sub>2</sub> and then subjected to translesion DNA synthesis by various DNA polymerases. Then, frequencies of mutations on the DNA products were determined by using next-generation sequencing technology. The majority of observed mutations were either C>A or G>A, caused by dAMP insertion at G and C residues, respectively. These mutations showed similar spectra to COSMIC cancer mutational signature 18 and 36, which are proposed to be caused by ROS. The in vitro mutations can be produced by replicative DNA polymerases (yeast DNA polymerase δ and ε), suggesting that ordinary DNA replication is sufficient to produce them. Very little G>A mutation was observed immediately after exposure to H<sub>2</sub>O<sub>2</sub>, but the frequency was increased during the 24 h <em>after</em> the ROS was removed, indicating that the initial oxidation product of cytosine needs to be maturated into a mutagenic lesion. Glycosylase-sensitivities of these mutations suggest that the C>A were made on 8-oxoguanine or Fapy-guanine, and that G>A were most likely made on 5-hydroxycytosine modification.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"134 ","pages":"Article 103617"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568786423001714/pdfft?md5=00e86355fddb378636f4a48e12209041&pid=1-s2.0-S1568786423001714-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786423001714","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) are a major threat to genomic integrity and believed to be one of the etiologies of cancers. Here we developed a cell-free system to analyze ROS-induced mutagenesis, in which DNA was exposed to H2O2 and then subjected to translesion DNA synthesis by various DNA polymerases. Then, frequencies of mutations on the DNA products were determined by using next-generation sequencing technology. The majority of observed mutations were either C>A or G>A, caused by dAMP insertion at G and C residues, respectively. These mutations showed similar spectra to COSMIC cancer mutational signature 18 and 36, which are proposed to be caused by ROS. The in vitro mutations can be produced by replicative DNA polymerases (yeast DNA polymerase δ and ε), suggesting that ordinary DNA replication is sufficient to produce them. Very little G>A mutation was observed immediately after exposure to H2O2, but the frequency was increased during the 24 h after the ROS was removed, indicating that the initial oxidation product of cytosine needs to be maturated into a mutagenic lesion. Glycosylase-sensitivities of these mutations suggest that the C>A were made on 8-oxoguanine or Fapy-guanine, and that G>A were most likely made on 5-hydroxycytosine modification.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.