Contactless interaction recognition and interactor detection in multi-person scenes

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2023-12-23 DOI:10.1007/s11704-023-2418-0
Jiacheng Li, Ruize Han, Wei Feng, Haomin Yan, Song Wang
{"title":"Contactless interaction recognition and interactor detection in multi-person scenes","authors":"Jiacheng Li, Ruize Han, Wei Feng, Haomin Yan, Song Wang","doi":"10.1007/s11704-023-2418-0","DOIUrl":null,"url":null,"abstract":"<p>Human interaction recognition is an essential task in video surveillance. The current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other people. In this paper, we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the scene. To address this problem, we propose an Interactive Relation Embedding Network (IRE-Net) to simultaneously identify the subjects involved in the interaction and recognize their interaction category. As a new problem, we also build a new dataset with annotations and metrics for performance evaluation. Experimental results on this dataset show significant improvements of the proposed method when compared with current methods developed for human interaction recognition and group activity recognition.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"27 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2418-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Human interaction recognition is an essential task in video surveillance. The current works on human interaction recognition mainly focus on the scenarios only containing the close-contact interactive subjects without other people. In this paper, we handle more practical but more challenging scenarios where interactive subjects are contactless and other subjects not involved in the interactions of interest are also present in the scene. To address this problem, we propose an Interactive Relation Embedding Network (IRE-Net) to simultaneously identify the subjects involved in the interaction and recognize their interaction category. As a new problem, we also build a new dataset with annotations and metrics for performance evaluation. Experimental results on this dataset show significant improvements of the proposed method when compared with current methods developed for human interaction recognition and group activity recognition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多人场景中的非接触式交互识别和交互者检测
人机交互识别是视频监控中的一项重要任务。目前关于人机交互识别的研究主要集中在只有近距离接触的交互主体而没有其他人的场景。在本文中,我们将处理更实际但更具挑战性的场景,即互动主体是非接触式的,并且场景中还存在其他未参与互动的主体。为解决这一问题,我们提出了一种交互关系嵌入网络(IRE-Net),可同时识别参与交互的主体并识别其交互类别。作为一个新问题,我们还建立了一个带有注释和性能评估指标的新数据集。在该数据集上的实验结果表明,与目前针对人际互动识别和群体活动识别所开发的方法相比,所提出的方法有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model SEOE: an option graph based semantically embedding method for prenatal depression detection FedTop: a constraint-loosed federated learning aggregation method against poisoning attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1