Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo
{"title":"Bending-Reinforced Grid Shells for Free-form Architectural Surfaces","authors":"Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo","doi":"10.1016/j.cad.2023.103670","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field<span> that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.