Weimin Chen , Lei Qu , Yongnan Xiong , Xing Luo , Fuxing Yin
{"title":"Atomic mobilities, diffusion coefficients, and kinetic coefficients in Ti-rich Ti–Mo–Nb system","authors":"Weimin Chen , Lei Qu , Yongnan Xiong , Xing Luo , Fuxing Yin","doi":"10.1016/j.calphad.2023.102654","DOIUrl":null,"url":null,"abstract":"<div><p><span>Diffusion coefficient is an important physical property to control the microstructure, thus the establishment of atomic mobility databank for Ti-based alloy systems is vital to the design of novel Ti alloys. In the present work, ternary Ti–Mo–Nb diffusion couples within the single bcc phase were prepared and measured after annealing at 1273 K for 25 h, and interdiffusion coefficients of bcc Ti–Mo–Nb alloys at 1273 K were determined from the experimental composition profiles by using Matano–Kirkaldy method. Subsequently, the atomic mobility parameters of bcc Ti–Mo–Nb system under the CALculation of PHAse Diagrams (CALPHAD) framework were assessed by using recently proposed diffusion models, which were verified by the comparisons between the experimental interdiffusion coefficients/composition profiles and the model-predicted results. Moreover, diffusion models were carefully discussed for the ternary assessment. Finally, relationships among atomic mobility, kinetic coefficient, and diffusion coefficients were discussed and demonstrated </span><em>via</em> ternary contour maps. The present work contributes to the development of diffusion databank for computational design of biomedical Ti alloys.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591623001268","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion coefficient is an important physical property to control the microstructure, thus the establishment of atomic mobility databank for Ti-based alloy systems is vital to the design of novel Ti alloys. In the present work, ternary Ti–Mo–Nb diffusion couples within the single bcc phase were prepared and measured after annealing at 1273 K for 25 h, and interdiffusion coefficients of bcc Ti–Mo–Nb alloys at 1273 K were determined from the experimental composition profiles by using Matano–Kirkaldy method. Subsequently, the atomic mobility parameters of bcc Ti–Mo–Nb system under the CALculation of PHAse Diagrams (CALPHAD) framework were assessed by using recently proposed diffusion models, which were verified by the comparisons between the experimental interdiffusion coefficients/composition profiles and the model-predicted results. Moreover, diffusion models were carefully discussed for the ternary assessment. Finally, relationships among atomic mobility, kinetic coefficient, and diffusion coefficients were discussed and demonstrated via ternary contour maps. The present work contributes to the development of diffusion databank for computational design of biomedical Ti alloys.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.