Terence Kevin Manfoumbi Djonguet, Guy Martial Nkiet
{"title":"An independence test for functional variables based on kernel normalized cross-covariance operator","authors":"Terence Kevin Manfoumbi Djonguet, Guy Martial Nkiet","doi":"10.1016/j.jmva.2023.105293","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an independence test for random variables valued into metric spaces by using a test statistic<span> obtained from appropriately centering and rescaling the squared Hilbert–Schmidt norm of the usual empirical estimator of normalized cross-covariance operator. We then get asymptotic normality of this statistic under independence hypothesis, so leading to a new test for independence of functional random variables. A simulation study that allows to compare the proposed test to existing ones is provided.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105293"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001392","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an independence test for random variables valued into metric spaces by using a test statistic obtained from appropriately centering and rescaling the squared Hilbert–Schmidt norm of the usual empirical estimator of normalized cross-covariance operator. We then get asymptotic normality of this statistic under independence hypothesis, so leading to a new test for independence of functional random variables. A simulation study that allows to compare the proposed test to existing ones is provided.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.