Epigallocatechin-3-gallate attenuates arsenic-induced fibrogenic changes in human kidney epithelial cells through reversal of epigenetic aberrations and antioxidant activities
Mary Sonia Iheanacho, Ramji Kandel, Priti Roy, Kamaleshwar P. Singh
{"title":"Epigallocatechin-3-gallate attenuates arsenic-induced fibrogenic changes in human kidney epithelial cells through reversal of epigenetic aberrations and antioxidant activities","authors":"Mary Sonia Iheanacho, Ramji Kandel, Priti Roy, Kamaleshwar P. Singh","doi":"10.1002/biof.2027","DOIUrl":null,"url":null,"abstract":"<p>Renal fibrosis is a pathogenic intermediate stage of chronic kidney disease (CKD). Nephrotoxicants including arsenic can cause kidney fibrosis through induction of oxidative stress and epigenetic aberrations. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, is known to have antioxidant and epigenetic modulation properties. Whether EGCG, through its antioxidant and epigenetic modulating activities, can attenuate fibrogenesis is not known. Therefore, the objective of this study was to determine whether EGCG can attenuate arsenic-induced acute injury and long-term exposure associated fibrogenicity in kidney epithelial cells. To address this question, two human kidney epithelial cell lines Caki-1 and HK-2 exposed to arsenic for both acute and long-term durations were treated with EGCG. The protective effect of EGCG on arsenic-induced cytotoxicity and fibrogenicity were evaluated by measuring the cell growth, reactive oxygen species (ROS) production, genes expression, and epigenetic changes in histone marks. Results revealed that EGCG has a protective effect in arsenic-induced acute cytotoxicity in these cells. EGCG scavenges the increased levels of ROS in arsenic exposed cells. Aberrant expression of fibrogenic genes in arsenic exposed cells were restored by EGCG. Abrogation of arsenic-induced fibrogenic changes was also associated with EGCG-mediated restoration of arsenic-induced aberrant expression of epigenetic regulatory proteins and histone marks. Novel findings of this study suggest that EGCG, through its antioxidant and epigenetic modulation capacities, has protective effects against arsenic-induced cytotoxicity and fibrogenic changes in kidney epithelial cells.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal fibrosis is a pathogenic intermediate stage of chronic kidney disease (CKD). Nephrotoxicants including arsenic can cause kidney fibrosis through induction of oxidative stress and epigenetic aberrations. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, is known to have antioxidant and epigenetic modulation properties. Whether EGCG, through its antioxidant and epigenetic modulating activities, can attenuate fibrogenesis is not known. Therefore, the objective of this study was to determine whether EGCG can attenuate arsenic-induced acute injury and long-term exposure associated fibrogenicity in kidney epithelial cells. To address this question, two human kidney epithelial cell lines Caki-1 and HK-2 exposed to arsenic for both acute and long-term durations were treated with EGCG. The protective effect of EGCG on arsenic-induced cytotoxicity and fibrogenicity were evaluated by measuring the cell growth, reactive oxygen species (ROS) production, genes expression, and epigenetic changes in histone marks. Results revealed that EGCG has a protective effect in arsenic-induced acute cytotoxicity in these cells. EGCG scavenges the increased levels of ROS in arsenic exposed cells. Aberrant expression of fibrogenic genes in arsenic exposed cells were restored by EGCG. Abrogation of arsenic-induced fibrogenic changes was also associated with EGCG-mediated restoration of arsenic-induced aberrant expression of epigenetic regulatory proteins and histone marks. Novel findings of this study suggest that EGCG, through its antioxidant and epigenetic modulation capacities, has protective effects against arsenic-induced cytotoxicity and fibrogenic changes in kidney epithelial cells.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.