Zora Rukavina, May Wenche Jøraholmen, Dunja Božić, Ivana Frankol, Petra Golja Gašparović, Nataša Škalko-Basnet, Maja Šegvić Klarić, Željka Vanić
{"title":"Azithromycin-loaded liposomal hydrogel: a step forward for enhanced treatment of MRSA-related skin infections.","authors":"Zora Rukavina, May Wenche Jøraholmen, Dunja Božić, Ivana Frankol, Petra Golja Gašparović, Nataša Škalko-Basnet, Maja Šegvić Klarić, Željka Vanić","doi":"10.2478/acph-2023-0042","DOIUrl":null,"url":null,"abstract":"<p><p>Azithromycin (AZT) encapsulated into various types of liposomes (AZT-liposomes) displayed pronounced <i>in vitro</i> activity against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) (1). The present study represents a follow-up to this previous work, attempting to further explore the anti-MRSA potential of AZT-liposomes when incorporated into chitosan hydrogel (CHG). Incorporation of AZT-liposomes into CHG (liposomal CHGs) was intended to ensure proper viscosity and texture properties of the formulation, modification of antibiotic release, and enhanced antibacterial activity, aiming to upgrade the therapeutical potential of AZT-liposomes in localized treatment of MRSA-related skin infections. Four different liposomal CHGs were evaluated and compared on the grounds of antibacterial activity against MRSA, AZT release profiles, cytotoxicity, as well as texture, and rheological properties. To our knowledge, this study is the first to investigate the potential of liposomal CHGs for the topical localized treatment of MRSA-related skin infections. CHG ensured proper viscoelastic and texture properties to achieve prolonged retention and prolonged release of AZT at the application site, which resulted in a boosted anti-MRSA effect of the entrapped AZT-liposomes. With respect to anti-MRSA activity and biocompatibility, formulation CATL-CHG (cationic liposomes in CHG) is considered to be the most promising formulation for the treatment of MRSA-related skin infections.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"73 4","pages":"559-579"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2023-0042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Azithromycin (AZT) encapsulated into various types of liposomes (AZT-liposomes) displayed pronounced in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) (1). The present study represents a follow-up to this previous work, attempting to further explore the anti-MRSA potential of AZT-liposomes when incorporated into chitosan hydrogel (CHG). Incorporation of AZT-liposomes into CHG (liposomal CHGs) was intended to ensure proper viscosity and texture properties of the formulation, modification of antibiotic release, and enhanced antibacterial activity, aiming to upgrade the therapeutical potential of AZT-liposomes in localized treatment of MRSA-related skin infections. Four different liposomal CHGs were evaluated and compared on the grounds of antibacterial activity against MRSA, AZT release profiles, cytotoxicity, as well as texture, and rheological properties. To our knowledge, this study is the first to investigate the potential of liposomal CHGs for the topical localized treatment of MRSA-related skin infections. CHG ensured proper viscoelastic and texture properties to achieve prolonged retention and prolonged release of AZT at the application site, which resulted in a boosted anti-MRSA effect of the entrapped AZT-liposomes. With respect to anti-MRSA activity and biocompatibility, formulation CATL-CHG (cationic liposomes in CHG) is considered to be the most promising formulation for the treatment of MRSA-related skin infections.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.