Li Zeng, Xueli Jin, Qing-Ao Xiao, Wei Jiang, Shanshan Han, Jin Chao, Ding Zhang, Xuan Xia, Decheng Wang
{"title":"Ferroptosis: action and mechanism of chemical/drug-induced liver injury.","authors":"Li Zeng, Xueli Jin, Qing-Ao Xiao, Wei Jiang, Shanshan Han, Jin Chao, Ding Zhang, Xuan Xia, Decheng Wang","doi":"10.1080/01480545.2023.2295230","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1300-1311"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2023.2295230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
药物性肝损伤(DILI)的特点是肝细胞损伤、胆汁淤积性损伤和混合性损伤。如果出现急性肝衰竭等严重临床后果,则需要进行肝移植。目前的研究发现,多种机制参与了 DILI,如线粒体氧化应激、细胞凋亡、坏死、自噬、铁噬等。当肝细胞死于铁依赖性脂质过氧化时,就会发生铁跃迁,这在 DILI 中起着关键作用。一些药物或化学物质进入肝脏代谢后,转化为肝毒性物质,消耗还原型谷胱甘肽(GSH),降低依赖于GSH的GPX4的还原能力,导致肝细胞氧化还原失衡,活性氧(ROS)和脂质过氧化水平升高,导致肝细胞受损;一些药物促进铁蛋白自噬,协调离子水平升高和铁蛋白沉着。本综述旨在总结铁蛋白沉积在化学或药物诱导的肝损伤(化学/药物性肝损伤)中的作用,以及天然产品如何抑制铁蛋白沉积以预防化学/药物性肝损伤。
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.